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Emphysema is a progressive disease characterized by irreversible tissue destruction and
airspace enlargement, which manifest as low attenuation area (LAA) on CT images.
Previous studies have shown that inflammation, protease imbalance, extracellular
matrix remodeling and mechanical forces collectively influence the progression of
emphysema. Elastic spring network models incorporating force-based mechanical
failure have been applied to investigate the pathogenesis and progression of
emphysema. However, these models were general without considering the patient-
specific information on lung structure available in CT images. The aim of this work was
to develop a novel approach that provides an optimal spring network representation of
emphysematous lungs based on the apparent density in CT images, allowing the
construction of personalized networks. The proposed method takes into account the
size and curvature of LAA clusters on the CT images that correspond to a pre-stressed
condition of the lung as opposed to a naïve method that excludes the effects of pre-stress.
The main findings of this study are that networks constructed by the new method 1) better
preserve LAA cluster sizes and their distribution than the naïve method; and 2) predict
different course of emphysema progression compared to the naïve method. We conclude
that our new method has the potential to predict patient-specific emphysema progression
which needs verification using clinical data.
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INTRODUCTION

Emphysema is an important component of chronic obstructive pulmonary disease (COPD) characterized
by flow limitation and increased lung compliance as a result of gradual destruction of the small airways and
alveolar walls leading to the enlargement of peripheral airspaces (Snider, 1985; Snider, 1989). The risk
factors for COPD include cigarette smoking, air pollution and genetic factors (Barnes, 2000). Decades of
studies have revealed that various cellular and molecular mechanisms (Barnes, 2000; Barnes et al., 2003;
Barnes, 2014) contribute to the pathogenesis and progression of emphysema including overexpression of
proteases (Janoff, 1985; Churg andWright, 2005), inflammation (Retamales et al., 2001; Churg et al., 2002;
Turato et al., 2002), and extracellular matrix remodeling (Fukuda et al., 1989; Finlay et al., 1996; Vlahovic
et al., 1999). Interestingly, alveolar wall rupture during mechanical stretching was also found to occur
(Kononov et al., 2001), which has led to the proposition that mechanical forces in general play a key role in
the progressive nature of the disease (Suki et al., 2003; Suki et al., 2013).
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The severity of emphysema and in general COPD is evident
via changes in the density on computed tomographic (CT) images
(Goddard et al., 1982; Bergin et al., 1986) and quantified by the
amount of low attenuation areas (LAA) (Gelb et al., 1993;
Mishima et al., 1997). A clinical manifestation of disease
progression is the yearly increase in the percent LAA (%LAA)
(Yuan et al., 2009) defined by the ratio of total LAA and the lung
area. A primary mechanism responsible for the progressive
increase in %LAA is the mechanical force-induced rupture of
alveolar walls (Mishima et al., 1999), enabled by the mechanical
failure of fibers within the septal wall (Kononov et al., 2001). The
underlying reason for this multiscale failure mechanism is that
there is a pre-existing stress, or prestress, within the lung due to
the transpulmonary pressure that distends the lung (Suki et al.,
2011). The fibers are weakened by enzymatic digestion and
abnormal matrix remodeling as a result of the complex
inflammatory process in the tissue (Ito et al., 2005).
Physiological levels of mechanical forces on fibers and septal
walls are capable of rupturing them as the structure weakens. The
prediction from this is that progression should be stronger in the
apex where mechanical stresses are higher due to the weight of the
lung. Indeed, as early as the 1971, an upper lobe predominance of
emphysema was found to be associated with the topographical
distribution of mechanical stress in the lung due to its own weight
(West, 1971). More recent clinical observations found an
accelerated rate of lung tissue deterioration after Lung Volume
Reduction Surgery (LVRS) (Gelb et al., 1999; Gelb et al., 2001)
that could be accounted for by mechanical force-enhanced
deterioration at the apex of the lung predicted by an elastic
network under the influence of gravity (Mondoñedo and Suki,
2017).

To quantitatively characterize the emphysematous lung
structure, the distributions of contiguous LAA clusters were
evaluated in a population of COPD patients, and the results
showed that these distributions followed a power law with an
exponent D that was closely associated with disease severity
(Mishima et al., 1999). To interpret these findings, a spring
network model was also used to mimic tissue deterioration.
The network model predicted a decrease in D with advancing
emphysema because the rupture of springs connecting adjacent
LAA clusters led to the coalescence of neighboring clusters
eliminating small and creating large clusters and hence
effectively decreasing D (Mishima et al., 1999). The spring
network model simulation thus suggested that the progression
of emphysema cannot be solely due to enzymatic activity; instead,
the enzymatic digestion and remodeling in tandem with
redistributed mechanical forces increases the risk of failure of
nearby structures giving rise to larger LAA clusters. Many
subsequent studies have utilized the spring network approach
to advance our general understanding of emphysema progression
(Suki et al., 2003; Ingenito et al., 2005; Takahashi et al., 2014;
Mondoñedo and Suki, 2017). However, the clinical utility of the
network approach has remained limited because the network
models have not considered the patient-specific details of the lung
structure.

The aim of this study was to develop a method of constructing
a spring network representation of the emphysematous lung

based on clinical CT images thus leading to a capacity to
perform personalized predictions of disease progression. To
this end, we introduce a novel image processing technique to
manipulate binary objects, which allows us to map LAA clusters
of lung CT scans of emphysematous patients to spring networks.
Our results show that the method preserves the structural
characteristics of LAA clusters significantly better than a naïve
method that simply maps LAA onto the elastic networks.
Furthermore, we find that the new method predicts
significantly different patterns of tissue deterioration than the
naïve method, suggesting the potential for prediction of realistic
patient-specific disease progression.

METHODS

A total of 20 slices from lung CT scans acquired at total lung
capacity in 10 patients were selected from the National Lung
Screening Trial dataset (National Lung Screening Trial
ResearchAberle et al., 2011), such that the %LAA in each slice
ranged from 5 to 40% of the total lung area segmented
automatically (Gerard et al., 2020; Gerard et al., 2021). A pixel
was considered LAA if its CT intensity was lower than −960
Hounsfield units, which is often used as a threshold for density-
based quantification of emphysema (Tanabe et al., 2012). Axial
2D lung slices were mapped onto hexagonal linearly elastic
networks of identical springs with unit spring constants. The
springs in the network were prestressed, i.e., the distance between
two nodes was larger than the resting length of the spring. A set of
contiguous LAA pixels with 4-connectivity formed a LAA cluster.
For each LAA cluster a mask was created in one of two ways (see
below), which was then mapped onto the spring network. The
springs that were inside the mask were eliminated from the
network to mimic the low elastic recoil associated with
emphysematous lesions. In addition, springs in high
attenuation areas (defined as pixels with Hounsfield unit
>−500) corresponding to for example blood vessels were
assigned a resting length twice as large as regular springs. This
ensured that these springs did not contract after optimization.
The springs along the boundary of the lung area were fixed
whereas those inside the lung area were free to move. The
equilibrium configuration of the network was obtained by
allowing the internal nodes of the network to move until the
total elastic energy of the network was minimized using simulated
annealing (Cavalcante et al., 2005). The spring networks were
then converted to apparent CT images by assigning an intensity
value to each pixel that is proportional to the mean spring
stiffness within the area of the pixel as described previously
(Wellman et al., 2018).

The first method was the naïve method (NM), in which the
LAA cluster mask image was simply superimposed on the spring
network and springs inside the mask were eliminated, creating
void areas. However, eliminating springs led to an expansion of
the holes after the equilibrium configuration of the network was
obtained, which resulted in larger and more round shapes
compared to the original LAA masks. To correct for the size
and shape changes, we introduced a novel method, called the
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Curvature and Size Adjusted Method (CSAM), which
preprocessed the LAA masks as follows. The preprocessing
incorporated adjustment both in size and shape by
manipulating the boundary of the LAA mask. The boundary
pixels can be expressed as a closed curve on the x-y plane:

r(t) � (X(t), Y(t)) (1)
where r(t) is a parametric vector that points to the boundary
of a LAA mask, X(t) and Y(t) are the x and y coordinates of
r(t) along two orthogonal base vectors, t is a parameter
between 0 and 1 that describes the relative position along
the boundary curve with respect to an arbitrary starting point
at t = 0. To reduce the size of a LAA cluster, we resize the
boundary as:

rs(t) � ��
α

√ · r(t) + (1 − ��
α

√ ) · ∫
1

t�0
r(t)dt (2)

where α is the ratio of the corrected LAA size to the original size.
Note that when α � 1, rs(t) � r(t). Alternatively, when α � 0,
rs(t) � ∫1

t�0 r(t)dt � constant and hence the boundary becomes
a single point, the centroid of the original mask.

To correct for the changes in shape of a LAA mask, we first
calculate the curvature along the boundary, decrease the
curvature everywhere by a constant, and then reconstruct the
LAA mask from the adjusted curvature profile. The curvature is
calculated along the size-adjusted curve as

ks(t) �
∣∣∣∣∣∣∣∣T′(t)∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣rs′(t)∣∣∣∣∣∣∣∣ (3)

where T(t) is the unit tangent vector of rs(t) and the′ denotes
differentiation with respect to t. Here, rs′(t) can be calculated with
either forward or backward difference approximation defined as:

rs′+(t) � rs(t + Δ) − rs(t)
Δ (4)

and

rs′−(t) � rs(t) − rs(t − Δ)
Δ (5)

where Δ≪ 1.
T ’(t) is then obtained using a 2nd order central difference

approximation:

T
′
′(t) � rs′+(t) − rs′−(t)

Δ (6)

A constant β is then subtracted from k(t) to obtain the
curvature-adjusted kcs(t) � ks(t) − β. Note that kcs is applied
to the size-adjusted curve. To reconstruct Xcs(t) and Ycs(t)
from kcs(t), we integrate twice with respect to t:

θ(t) + θ0 � ∫ kcs(t)dt (7)

Xcs(t) � −∫ cos(θ(t))dt (8)

Ycs(t) � ∫ sin(θ(t))dt (9)

Note that θ0 can be determined by brute force, allowing the
reconstructed boundary to have the same rotational orientation
as the original boundary.

The optimal values of α and β for LAA clusters of various
sizes were determined by computational experiments
mapping synthetic LAA clusters onto a spring network.
Specifically, synthetic LAA maps, which were binary images
of a single LAA in 4 different shapes, were resized to 6
different sizes containing 200 to 5,000 pixels. These
synthetic LAA images were mapped onto spring networks
using CSAM with α ranging from 0.5 to 1.0 and β from 0.0 to
0.3, both in steps of 0.02. The spring networks were then
converted first to virtual CT images as described previously
(Wellman et al., 2018) and thresholded to obtain the
corresponding LAA maps. The error between the mapped
LAA and the original LAA image was quantified by the
average symmetric surface distance (ASSD, Supplementary
Figure S1), which is a common metric to evaluate
segmentation quality in CT and MRI research (Akkus
et al., 2017). The main advantage of ASSD over other
metrics, such as the total area overlap, is that ASSD is
sensitive to dissimilarities in shape, not just size. An error
map was obtained for each synthetic LAA image by
assembling the error for all combinations of α and β. The
optimal values of α and β were then determined for each error
map by finding the region with the lowest error.

To further analyze the performance of NM and the CSAM,
two elastic spring networks were constructed from each
thresholded CT image resulting in a total of 40 networks.
For each network, the configuration with lowest elastic energy
was found as above. To simulate the progression of
emphysema, the spring networks underwent progressive
degradation by removing all springs that carried a force
higher than 80% of the maximum force (Mishima et al.,
1999). The new configuration corresponding to the
minimal elastic energy was found and the procedure was
repeated 10 times. At each iteration, the apparent CT
images were used to quantify the changes in LAA structure
during simulated disease progression. Structural parameters,
including %LAA, the size of the largest LAA cluster and the
average local difference between NM and CSAMwere assessed
at each iteration.

To evaluate the quality of LAA reconstructed in a spring
network compared to the CT image of ground truth, 4
structural parameters of a lung CT or spring network-
based apparent CT image were examined. These include
the %LAA, the exponent S of LAA size distribution, the
local difference of LAA clusters and the largest LAA cluster
(AL). The AL cluster was obtained by counting the number of
pixels of the largest LAA cluster of a lung CT slice. The local
difference (Dlocal) was quantified between the NM- and
CSAM-generated apparent CT images. The apparent
images were partitioned into grids of 10 × 10 squares, and
the %LAA of each square was calculated as %LAAi. An
example is shown in Supplementary Figure S2. The local
difference was defined as the average absolute difference of
%LAAi between the apparent images:
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Dlocal � 1
N

∑
N

i�1

∣∣∣∣∣∣∣∣∣%LAAi(NM) −%LAAi(CSAM)
∣∣∣∣∣∣∣∣∣ (10)

where N is the total number of squares in an apparent CT image,
excluding those that contain no LAA clusters corresponding to
both spring networks and NM and CSAM in the parentheses
indicate which method was used to calculate the spring network-
based %LAA. The quantification of %LAA was aimed at
evaluating the quality of the reconstructed LAA cluster
structure in the spring networks at the scope of the entire
network. The ground truth, referred to as %LAAGT, was the %
LAA of area occupied by LAA calculated for each CT slice. The
difference between %LAA calculated from the spring networks
and %LAAGT, referred to as ELAA, characterized the error
produced by the reconstruction algorithm. The LAA size
distributions in CT and the spring networks were analyzed on

the log-log domain. Since the distributions show a region of linear
decrease, the exponent D, the negative slope of regression line fit
to cumulative distribution of LAA sizes, was used to characterize
the distributions.

ANCOVA was applied to analyze the relationship between the
values of optimal parameters and LAA sizes among the 4 groups
of LAA shapes. Linear regression was used to quantify the
dependency of ELAA on %LAAGT. Linear regression was also
applied to fit the change of Dlocal against the progression of
disease. Wilcoxon Rank Sum test was used to compare the
absolute values of ELAA between the naïve and CSAM groups.
Linear regression and Welch’s test was used to compare S in
different groups. p < 0.05 was considered statistically significant
for all analyses. All image and data analyses were performed with
MATLAB.

RESULTS

An example of the performances of the NM and the CSAM is
shown in Figure 1. It can be seen that CSAM better approximates
the original LAA shape and size than the NM. In total, 24 artificial
CT images were generated with LAAs in 4 random shapes and 6
different sizes. Every image was reconstructed with the spring
network with all combinations of the size and shape parameters, α
and β, respectively, to obtain error maps. The error between the
original and the reconstructed LAAs was quantified with ASSD.
An example error map is displayed in Figure 2. Errors
corresponding to the NM are at the origin (0,0) of these maps.
The optimal values of α and β corresponding to the lowest ASSD
were then plotted for the 4 shapes as a function LAA cluster size
in Figure 3. The optimal parameters associated with the lowest
errors of each map were analyzed with ANCOVA, which revealed
that LAA size had a statistically significant effect on the optimal
value of α (p < 0.001) but LAA shape did not influence α (p =
0.37). Interestingly, neither size nor shape had a statistically
significant effect on the optimal value of β (p = 0.46 and p =
0.44, respectively). Furthermore, a weak power law relationships
were used to describe the dependence of optimal parameters on
LAA size (see Figure 3). The power law relationship was used to
select the optimal α for the spring network-based reconstruction
of CT images that contain thousands of LAA clusters of different
size and shape.

Spring networks were constructed from CT images from the
National Lung Screening Trial (NLST) dataset using both the NM
and CSAM with optimal parameters. The target CT images were
selected so that the LAA% ranged from a low value of ~3% (early
emphysema) to a value >40% (advanced emphysema). Figure 4A
displays a representative CT image, the corresponding binary
LAA structure as well we the spring networks processed with NM
or CSAM and the corresponding reconstructed LAA images. The
binary images in the third row are zoomed-in regions of interest
emphasizing a large LAA cluster with red lines on the
reconstructed images representing the edges of original LAA
clusters. Visual assessment suggests that compared to NM, the
CSAM approximated considerably better the original LAA
clusters. Figure 4B shows another example of the spring

FIGURE 1 | Examples of mapping a synthetic low attenuation area (LAA)
cluster onto spring networks using the naïve method (NM) and the Curvature
and Size Adjusted Method (CSAM). (A) Binary image of the LAA. Blue and red
lines represent respectively the size and curvature steps of the CSAM.
(B) Removal of springs in a prestressed elastic network. (C) Configuration of
the networks after solving for mechanical equilibrium. Note that dark blue and
yellow represent low, and high mechanical force on springs. (D) Comparison
of the reconstructed LAAs (green) and the original LAA (orange).
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network obtained with CSAM. A magnified region in panel C
demonstrates the distribution of mechanical forces represented
by the colors.

To quantify the difference between original CT images and
reconstructed ones, the error ELAA was calculated for 20 CT
images with varying %LAA with both methods. As Figure 5A
shows, the error corresponding to NM was ~10 times larger than
that of CSAM (4.10 ± 3.41 vs 0.32 ± 1.35, p < 0.001). Additionally,
Figure 5B demonstrates that ELAA increased linearly with %
LAAGT using the NM (R2 = 0.83, p < 0.01), while ELAA was not a
function of %LAAGT using the CSAM (R2 = 0.0489, p = 0.349).
Note that the negative values correspond to LAA clusters smaller
than those on the original CT image. The correlation between
ELAA and %LAAGT in the NM is a result of the prestress that
deforms the network to a greater level as springs are removed to
mimic the more advanced disease stages with larger %LAA. The
lack of such correlation in the CSAM indicates that the
preprocessing of LAAs successfully attenuated the influence of
prestress in the network.

The size distribution of LAAs displayed a region of linear
decrease on a log-log graph for the original CT images as well as
the reconstructed images with both methods (Figure 6)
consistent with a power law distribution of LAA sizes. The
CSAM preserved the slope of regression line from size 50 to
1,000 pixels consistent with that obtained from CT scans. For
LAAs with pixel size between 1 and 50, the CSAM distribution is
almost identical to NM distribution. However, there was a small
but statistically significant difference between the exponents of

the distribution of the original CT and NM (p < 0.0001). In
contrast, there was no difference between the exponents of the
original CT and CSAM network-derived distributions (inset,
Figure 6).

To test whether the prediction of disease progression depends
on the initial structural differences generated by the twomethods,
the progression of emphysema was simulated using both
approaches. Networks created by NM and CSAM were used
iteratively to mimic tissue degradation by eliminating springs
bearing a force higher than 80% of the maximum. Figure 7
displays an example CT image and elastic network
representations before and two steps after simulated
emphysema progression. At the initial stage (the left column),
the general morphology of LAA clusters represented by the voids
in the networks looks similar for the NM and CSAM. However,
the locations of the springs carrying the highest forces are
different. As the degradation progressed, the structural
differences increased between the two methods.

To quantify the average local differences between the spring
networks, Dlocal was calculated during the simulated progression.
Springs were eliminated from the networks, which were
converted to apparent CTs to calculate Dlocal at similar disease
severity or total %LAA. Figure 8 shows the Dlocal of 10 subjects as
a function of %LAA. Dlocal was significantly associated with
disease severity (R2 � 0.9, p< 0.001), indicating that LAA
clusters in the spring networks constructed with CSAM
evolved with a different pattern. Furthermore, the increase of
the local difference was invariant of initial %LAA since the linear

FIGURE 2 | (A) An example error map characterizing the morphological differences between a low attenuation area (LAA) cluster from a CT image and LAA clusters
reconstructed by the Curvature and Size Adjusted Method (CSAM). The error, increasing from blue to red in log scale, is given in terms of the average symmetric surface
distance (ASSD) as a function of the size parameter α and the shape parameter β. (B) Target LAA cluster in CT image. (C) Reconstructed LAA clusters with different
combination of parameters with dashed lines pointing to their error values on the map.
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relationship included CT images of 10 subjects with distinctly
different LAA structure and %LAA. Lastly, the evolution of the
largest LAA cluster was traced for one subject through 30
iterations in Figure 9. There are sudden jumps in cluster size
implying the coalescence of two neighboring clusters.
Interestingly, the phenomenon of coalescence takes place at
different iteration numbers for the two mapping methods. At
the end of the iterations, the largest cluster size produced by the
NM substantially exceeded that produced by the CSAM.

DISCUSSION

In this study, we introduced a newmethod for constructing elastic
spring network representations of emphysematous lungs based
on patient CT images to enable personalization of simulated
emphysema progression. The main findings are as follows: 1)
CSAM produced spring networks that better preserved the total
area of LAA clusters as well as their size distributions compared to
the NM; and 2) the structure and the rate of emphysema
progression predicted by the CSAM are different from those
produced by the NM.

The airways, alveolar ducts, and alveoli are maintained
distended in the lung by the prestress due to the

transpulmonary pressure generated by the negative pleural
pressure in the thoracic cavity. This is mimicked in the
network model by assigning spring rest lengths that were
smaller than their length used during the mapping of CT
images to the network. The mechanical properties of lung
parenchyma are dominated by ECM and associated fibers
(Suki et al., 2011), especially at high lung volumes where the
CT images are taken. Hence collagen fibers due to their
recruitment also provide non-linear parenchymal elasticity
(Maksym and Bates, 1997; Jawde et al., 2021). In addition,
airway mechanical properties are also known to behave
nonlinearly (LaPrad et al., 2013; Eskandari et al., 2018).
However, in this study we were not modeling inflation and
deflation. Hence, tissue elasticity was represented by linear
springs within the network. Additional simulations were
carried out (Supplementary Figure S3) demonstrating that
the evolution of the cluster structure depends on tissue
nonlinearities, which tend to smooth the LAA cluster
boundaries. However, the CSAM and the NM methods clearly
lead to different evolutions of the largest LAA cluster.

The spring constants were set to unity despite the well-known
parenchymal stiffness values reported previously using various
techniques (Lai-Fook et al., 1976; Cavalcante et al., 2005;
Maghsoudi-Ganjeh et al., 2021). The absolute value of the
spring constants, however, does not influence network
breakdown. What is apparently more important during
emphysema progression is that alveolar septal walls and ducts
are gradually destroyed through the mechanisms of rupture
(Kononov et al., 2001), which was simulated by breaking the
springs according to a force-based rule as previously (Mishima
et al., 1999; Suki et al., 2003; Ingenito et al., 2005; Takahashi et al.,
2014). This is a critical step since following rupture, there is a
redistribution of mechanical forces which increases the likelihood
of further rupture at locations of high stresses (Suki et al., 2003).
To model this, we used a threshold of 80% of the maximum force.
Simulations using 70 and 90% thresholds provided similar results
(Supplementary Figure S4) to those in Figure 8 suggesting that
the conclusions in this study are not sensitive to the value of the
force threshold.

Tomodel the tissue breakdown process in a personalizedmanner,
we mapped LAA clusters from CT images onto the network model.
The mapping is, however, not unique, and in this study, we
investigated two methods. The first is the rigid NM, which simply
creates holes in the network by removing all springs corresponding to
each LAA cluster on a CT image. This simple method, however, does
not consider the presence of prestress and hence it allows expansion
of LAA regions after the network is solved for mechanical
equilibrium, as demonstrated in Figure 1. In the ideal scenario
when there is only a single LAA cluster on the CT image, the
expansion of the LAA cluster is more enhanced for larger clusters
since the error grows with %LAA (Figure 5B). To tackle this
problem, the size parameter α in the CSAM attempts to correct
for the expansion by first reducing the size of hole compared to the
original LAA cluster on the CT image. The asymptotic behavior of α
for large values of LAA size can also be explained by the constraints of
the network boundary, where springs are not allowed to move, and
prestress-induced expansion is therefore not as significant. As a result,

FIGURE 3 | The optimal values of the size parameter α (A) and shape
parameter β (B) for 4 different low attenuation area (LAA) cluster shapes. The
target LAA clusters were resized to 7 different values across 3 orders of
magnitude, and the optimal parameters are obtained for each size.
Regressions for α and β are also shown.
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the efficacy of α could be biased for LAA clusters located near the
network boundary, which might also explain at least partially the
error produced by the CSAM in Figure 5. It still important to note
that the error following CSAM is not zero. Possible explanations for
this include the boundary effect in the resizing step similar to NM, a
filtering effect of the prestress that rounds sharp corners of LAAs and
the inevitable error of converting spring networks to apparent CT
images. Nevertheless, CSAM was able to reproduce the exponent of
the LAA size distribution calculated from the CT images while NM
produced a smaller exponent (inset, Figure 6).

Previous studies reported decreased exponents of the power
law LAA distribution in COPD patients, COPD patients with
smoke history and COPD patients with history of exacerbation
compared to normal subjects, subjects without smoke history,
and subjects without history of exacerbation (Tanabe et al., 2011;
Tanabe et al., 2012). A decrease in the exponent was interpreted
using a model in which coalescing neighboring LAA clusters is
favored probabilistically (Tanabe et al., 2012). This model is
equivalent to an elastic spring network in which springs are
eliminated with a probability proportional to the force they

FIGURE 4 | (A)Original CT from a patient and examples of mapping to spring networks using the naïve method (NM) and the Curvature and Size Adjusted Method
(CSAM). The left column displays the CT scan of an emphysema patient (top), the binary low attenuation area (LAA) map obtained by thresholding at −960 Hounsfield
Unit (middle), and a zoomed-in region of the LAAmap (bottom). The middle and right columns represent the same content for two spring networks constructed from the
CT image with the NM and CSAM. The red lines represent the boundaries of LAA clusters on the original CT. (B) Zoomed-in version of the rectangle on the CSAM
network in (A). Colors are proportional to force. The black arrow points to narrow bridge carrying a high force whereas the red arrow marks a region of high attenuation.

FIGURE 5 | (A) Absolute error (ELAA) between the percent low attenuation areas (%LAA) of CT scans and reconstructed images using either the naïve method (NM)
or the Curvature and Size Adjusted Method (CSAM). The graphs show the medians (lines), 75th percentiles (boxes) and 90th percentiles (error bars). (B) ELAA values as a
function%LAA of CT images (%LAAGT). Errors corresponding the NM and CSAM are shownwith filled blue and red triangles, respectively, and the solid and dashed lines
are the corresponding regression lines.
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carried (Mishima et al., 1999; Mondoñedo and Suki, 2017).
Alternatively, using a CT image-based model, normal pixels
were switched to emphysematous pixels with a probability
inversely proportional to their distance to a large LAA cluster
(Mondoñedo et al., 2019). This method also embodies

mechanical forces since tissue regions that separate large LAA
clusters carry a large force with a high probability.

Generally, the decreased exponent is consistent with a higher
probability of finding larger clusters which results from the
coalescence of LAA clusters where damaged alveolar wall

FIGURE 6 | The distribution of low attenuation area (LAA) clusters
computed from the CT images of 7 subjects (open circles) and reconstructed
with the naïvemethod (NM, blue) and the Curvature and Size AdjustedMethod
(CSAM, red). The exponents, defined as the negative slopes, are given
next to the regression lines between pixel values of 50 and 1,000. Inset: Mean
and estimated standard deviation of the exponents of LAA cluster
distributions. The * indicates p<0.05 compared to the CT value.

FIGURE 7 | Two spring networks (right) reconstructed from a single CT image (left) using the naïve method (NM) and the Curvature and Size Adjusted Method
(CSAM). The first column represents the reconstruction whereas the second and third columns show mechanical force-based network breakdown mimicking the
progression of emphysema. (A) Magnified views of the red square region in row (B). (B) spring network constructed with NM. (C) spring network reconstructed with
CSAM and simulation of emphysema progression. (D) Magnified view of the black square region in row (C).

FIGURE 8 | The percent local difference (Dlocal ) between two spring
networks during iterative simulation network breakdown. Dlocal is calculated
according to Eq. 10 to quantify differences in LAA structure on apparent CT
images constructed from the same CT scan with NM or CSAM.
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ruptures under the effect of mechanical forces during disease
progression. Indeed, the lower exponent corresponding to the
NM is due to the expansion of LAA clusters, leading to decreased
distances and higher mechanical forces between neighboring
LAAs (Figure 7). The higher forces in turn accelerate network
breakdown during simulated disease progression (Figure 9). The
deviation between the CT and the CSAM and NM distributions
for LAA sizes between 1 and 50 pixels is probably a resolution
issue stemming from small clusters during either the mapping of
LAAs to the spring network or reconstructing apparent CT
images from the network. Taken together, CSAM provided
small and LAA-size-independent error with a distribution of
their sizes consistent with the original CT image. Hence, networks
created by the CSAM have the potential to predict the evolution
of disease in a personalized manner.

Although patient-specific spring networks for predicting
emphysema progression have not been proposed, previous
elastic networks were applied to study the structure-function
relationships during disease progression or following lung
volume reduction, a procedure used to reduce the severity of
advanced emphysema (Cavalcante et al., 2005; Takahashi et al.,
2014; Mondoñedo and Suki, 2017). Our current study utilizes
patient-specific CT images not only to provide structural
information, but also to predict spatial pattern of the evolution
of LAA clusters during disease progression. We simulated the
progression of emphysema as an iterative process degrading
springs carrying the highest forces which incorporates the
notion that local inflammation generates enzymatic damage
which in turn reduces the failure stress and strain of collagen
and elastin fibers and ultimately the septal wall (Ito et al., 2005).
While many different implementations of failure models can be

used, we are interested in the extent to which CSAM-generated
networks predict different disease trajectories than NM-
generated networks. The results demonstrate that the
structural differences corresponding to the CSAM, and NM
networks accumulate with iterations (Figure 9). The structural
difference is quantified byDlocal that captures both the spatial and
morphological discrepancy of LAA clusters between the two
networks. The larger the total %LAA, the larger the effect of
prestress in expanding the clusters in the NM which results in an
increase in by Dlocal with %LAA (Figure 8). Spatial differences
and the growth of the largest LAA cluster suggest that the
evolution of LAA cluster structure is highly sensitive to the
initial network configuration. Indeed, the largest LAA cluster
displays with distinct patterns with sudden jumps that result in a
larger final largest cluster in the NM network. This is important
since a recent study reported that in 3D, large LAA clusters
coalesce and form a super cluster with probability approaching 1
in late-stage emphysema (Mondoñedo et al., 2019). Furthermore,
these super clusters not only characterize emphysema, but appear
to drive disease progression by changing mechanical forces
around its boundaries creating at risk regions of emphysema
in normal tissue.

The CSAM networks thus have the potential to become a
clinically useful tool in predicting emphysema progression.
Before using this approach, it should be experimentally
validated. Verifying the predictions of the model can in
principle be achieved by comparing them to repeated CT
images obtained in COPD patients. Within the current data
set, this is unfortunately difficult for several reasons. First, the
total lung volume at which the CT images were taken in
consecutive years is not the same, often resulting in a

FIGURE 9 | LAA configurations (A) and the evolution of the largest LAA cluster (B) traced through simulated network breakdown in two spring networks
constructed with NM or CSAM using the same patient CT image. Note that even when the largest clusters have similar size (iterations 1, 10 and 20), their morphological
difference is apparent.
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reduction during progression, which in turn can also generate a
decrease in the total number of low attenuation voxels. Second, a
successful prediction would require mapping the selected CT slice
to the network, mimicking disease progression, and comparing
the virtual image from the model to the same CT slice of the
patient taken at a later time. However, finding the same slice can
also be problematic if the lung volume is different, and the lung
undergoes heterogeneous tissue destruction in 3D. One solution
is to use 3D image registrations and extending the current
method into 3D, both of which are beyond the scope of the
present work.

The study was based on several simplifications resulting in the
following limitations: 1) The lung was modeled by a
homogeneous spring network even though there are large
variations in tissue stiffness within the parenchyma (Liu and
Tschumperlin, 2011) which appear to increase with aging (Sicard
et al., 2018). Future models should include local variations in
stiffness, which should also influence the pattern of network
breakdown. 2) The effects of airways on parenchymal distension
was ignored, despite recent data showing a significant association
between airway obstruction and emphysema severity (Bhatt et al.,
2016). Computational simulation also uncovered that airway
contraction-induced force propagates farther in an elastic
spring network model compared to in an elastic continuum
model (Ma and Bates, 2012). Hence, a more realistic model
should include the effects of airways especially because the
airway walls are stiffer than the parenchyma (Sicard et al.,
2018). 3) The size of the hexagons in the network was similar
to the pixel size in the CT images. Thus, the network resolution is
too coarse to incorporate all details needed for conversion
between spring network and apparent CT images. A ratio of 2:
1 between the dimensions of the CT pixel and a finite element
representation was shown to limit the error of conversion
between CT and network to a relatively small level (Diciotti
et al., 2015). 4) 3D interactions were neglected as we used 2D
models. The study that discovered the super clusters suggest that
these large percolating structures emerge in 3D (Mondoñedo
et al., 2019). Even though Figure 9 shows super clusters, this is
not generally observed in 2D. Therefore, the current method
should be extended into 3D for more relevant personalized
predictions.

In summary, we introduced a novel method of constructing
patient-specific spring network models based on 2D slices of lung
CT scans. The new method is significantly better than a simple
naïve method of mapping LAAs to the network. Despite the
simplifications used, our novel mapping approach compensates

for LAA size and shape alterations after solving for mechanical
equilibrium under conditions representing prestressed lung tissue
and has succeeded in preserving the structural characteristics and
statistical properties of LAA clusters seen on patient CT images.
Furthermore, we demonstrated that the simulated growth and
coalescence of LAAs in spring network models is sensitive to the
method of initial network generation. This method has the
potential to improve patient-specific prediction of emphysema
progression and therapeutic intervention, particularly when
combined with a realistic representation of disease progression
and airspace enlargement.
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