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BACKGROUND: Historically, cancer has been
considered a disease of the cell, caused by
mutations in genes that control proliferation,
differentiation, and death. In recent decades,
however, the microenvironment surrounding
the cancer cell has gained notoriety as a co-
conspirator in tumor initiation, progression,
immune evasion, and treatment response. As
tumors grow, they disrupt the structure and
function of the surrounding tissue via phys-
ical and biochemical mechanisms. The result-
ing physical abnormalities affect both cancer
cells and their microenvironment and fuel
tumorigenesis and treatment resistance. The
links between cancer biology and physics have
provided opportunities for the discovery of
new drugs and treatment strategies.

ADVANCES:Here,we propose four distinct phys-
ical cancer traits that capture the biomechan-
ical abnormalities in tumors: (i) elevated solid
stress, (ii) elevated interstitial fluid pressure,
(iii) increased stiffness and altered material
properties, and (iv) altered tissue microarchi-
tecture. Solid stresses are created as proliferat-

ing and migrating cells push and stretch solid
components of the surrounding tissue. Being
distinct from fluid pressure and close to zero
in most normal tissues, solid stresses are large
enough to compress blood and lymphatic ves-
sels in and around tumors, impairing blood
flow and the delivery of oxygen, drugs, and
immune cells. Acting at organ, tissue, and cel-
lular levels, solid stresses activate signaling
pathways that promote tumorigenesis and
invasiveness and induce treatment resistance.
Elevated interstitial fluid pressure is caused
by leakage of plasma from abnormally per-
meable tumor blood vessels and insufficient
lymphatic drainage. As a result, the interstitial
fluid leaks out of the tumor into the peritumor
tissue, causing edema and elution of drugs and
growth factors and facilitating invasion and
metastasis through flow-induced shear stresses.
Increased stiffness is caused by matrix depo-
sition and remodeling. Traditionally used as
a diagnostic marker, and more recently as a
prognostic factor, increased stiffness activates
signaling pathways that promote prolifera-
tion, invasiveness, and metastasis of cancer

cells. Finally, when normal tissue architecture
is disrupted by cancer growth and invasion,
microarchitecture is altered. Stromal and can-
cer cells and extracellular matrix adopt new
organization. This changes the interactions
between an individual cell and its surrounding
matrix and cells, which affects signaling path-
ways associated with invasion and metastasis.

OUTLOOK: The tumor microenvironment is
characterized by both biological and physical
abnormalities. The growing appreciation of the
role of tumor-stromal interactions in cancer
has led to seminal discoveries that have re-
sulted in previously unexplored targets and
strategies for treatment. Understanding the
key principles underlying the origins and con-
sequences of the physical traits of cancer will
be critical for improving treatment. Many of the
concepts involved are nonintuitive and require
deep and broad understanding of both the phys-
ical and biological aspects of cancer. Therefore, a
rigorous but accessible description of physical
cancer traits will assist research into the phys-
ical sciences of cancer—a highly multidiscipli-
nary area—and help it remain an active and
progressive subfield of cancer research. ▪
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Physical traits of cancer. To provide a comprehensive framework for understanding the links between the physics of cancer and signaling pathways in cancer
biology in terms of a small number of underlying principles, we propose four physical traits of cancer that characterize the major physical abnormalities shared by
most if not all tumors.
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The role of the physical microenvironment in tumor development, progression, metastasis, and treatment
is gaining appreciation. The emerging multidisciplinary field of the physical sciences of cancer is now
embraced by engineers, physicists, cell biologists, developmental biologists, tumor biologists, and
oncologists attempting to understand how physical parameters and processes affect cancer progression
and treatment. Discoveries in this field are starting to be translated into new therapeutic strategies
for cancer. In this Review, we propose four physical traits of tumors that contribute to tumor progression and
treatment resistance: (i) elevated solid stresses (compression and tension), (ii) elevated interstitial fluid
pressure, (iii) altered material properties (for example, increased tissue stiffness, which historically
has been used to detect cancer by palpation), and (iv) altered physical microarchitecture. After defining
these physical traits, we discuss their causes, consequences, and how they complement the biological
hallmarks of cancer.

C
ancer is generally considered a disease
of the cell, caused by mutations in genes
that control cell proliferation, death, me-
tabolism, and DNA repair. To create a
unified conceptual framework for under-

standing the various manifestations of cancer,
Hanahan and Weinberg proposed eight biol-
ogical hallmarks that delineate the key fea-
tures and properties of cancer cells (1). These
biological hallmarks are useful for concep-
tualizing cancer at the cellular level, but we now
know that the microenvironment surrounding
the cancer cell acts as a coconspirator in tumor
initiation and progression. As tumors grow,
they disrupt the surrounding tissue biochem-
ically and physically. They also recruit normal
cells from the surrounding tissue, which fur-
ther alter thematrix and cellular compositions
of the tumor. These perturbations result in
physical abnormalities associated with both
cancer cells and the microenvironment in
which they grow that influence tumor biology
and response to treatment (2).
To provide a more comprehensive concep-

tual framework for cancer, we propose four ad-
ditional traits stemming from the physical
abnormalities of tumors. These are (i) elevated
solid stress, (ii) elevated interstitial fluid pres-
sure (IFP) and the resulting fluid flow in the
interstitium, (iii) increased stiffness and al-
tered material properties, and (iv) altered mi-
croarchitecture (Fig. 1). As discussed in this
Review, these four physical traits are concep-
tually distinct but can interact synergistically.
They also enable and exacerbate many of the

biological hallmarks of cancer, thus facilitating
cancer cell proliferation and invasion, immune
system evasion, and resistance to therapies.

Solid stresses and elastic energy

Solid stresses, also known as residual stresses,
are the mechanical forces (compressive, ten-
sile, and shear) contained in—and transmitted
by—solid and elastic elements of the extracel-
lular matrix (ECM) and cells (3). Reported in
pascals or millimeters of mercury (1 mmHg ≅
133.3 Pa), solid stress values range from<100 Pa
(0.7 mmHg) in glioblastomas to 10,000 Pa
(75mmHg) in pancreatic ductal adenocarcino-
mas (PDACs) (4). Multiple mechanisms, sum-
marized in Fig. 2 and discussed below, are
responsible for generating solid stress in tumors.
1) Increased tissue volume caused by cell in-

filtration, cell proliferation, and matrix deposi-
tion. The added volume pushes and displaces
existing viscoelastic structures inside and out-
side the tumor and gives rise to solid stresses
in the tumor and the surrounding tissue (4, 5).
As a result, when tumor cells are depleted
through anticancer therapeutics, solid stress is
decreased, and blood vessels are decompressed
(6, 7).
2) Concerted displacement of normal tissue

(8, 9). Some tumors grow as well-circumscribed,
nodular masses, in which the tumor remains
cohesive and pushes the surrounding tissue,
generating considerable mechanical stresses.
Other tumors are less cohesive and more in-
filtrative, interdigitating through the normal
tissue by finding the path of least resistance or
by creating space by virtue of cytotoxic and
protease activities. In the latter case, there is
less production of solid stress (5, 10).
3) Swelling of existing glycosaminoglycan

matrix components such as hyaluronic acid
(HA) owing to (electro)osmotic water absorp-
tion (11, 12). These components take up avail-

able water and swell, generating solid stress
that is distinct from fluid pressure (12).
4) Actomyosin-mediated cell contractions.

Fibroblasts, immune cells, and cancer cells
can all contract matrix elements as they move
around in a tumor or try to repair structural
damage. Cell contraction generates tensile
forces that contract ECM components (13),
creating tension in some parts of the tumor,
which are generally balanced by compression in
other elements (4). Cancer-associated fibroblasts
(CAFs) that are activated with transforming
growth factor–b (TGF-b) becomemyofibroblasts
and can generate large contractile forces (14).
The impact of solid stress on cancer cell

biology was first recognized in 1997, when
Helmlinger et al. found that accumulated solid
stress inhibits the growth of tumor spheroids
(3). These stresses are sufficiently large to com-
press and even collapse blood and lymphatic
vessels (6, 7, 15). Vessel compression contrib-
utes to hypoxia (15, 16) and interferes with the
delivery and/or efficacy of chemo-, radio-, and
immunotherapies (17, 18). Solid stress may also
have additional, direct effects on tumor biology,
such as promoting the invasiveness of cancer
cells (19) and stimulating tumorigenic path-
ways in colon epithelia (20) (Fig. 3).
Cancer and normal cells have mechanosen-

sitive machinery, such as cell-ECM (21) and
cell-cell (22) adhesions and stretch-sensitive
ion channels (23), that allows them to respond
to applied forces. Solid stresses can also act on
cells indirectly by deformingECMcomponents.
For example, matrix-bound latent TGF-b, in-
active upon synthesis and unable to bind to its
cognate cell surface receptors, can be activated
bymyofibroblast-induced tensile forces onECM
(24). Other examples of ECM sensitivity to
tensile forces include the unfolding of fibro-
nectin in response to tensile forces (25), the
enzymatic resistance of collagen fibers (26),
and the tension-regulated interactions of fi-
bronectin with collagen fibers (27).
The nucleus is also a mechanosensitive or-

ganelle capable of responding to solid stresses
through the activity of nuclear pore complexes
and associated proteins, which modulate the
nuclear import of transcription factors when
the nucleus is deformed (28–30). Nuclear per-
turbations, such as those generated by cells
migrating through small pores, cause changes
in gene expression and induction of DNA re-
pair programs (31, 32).
YAP (Yes-associated protein) and TAZ (tran-

scriptional coactivator with PDZ-bindingmotif)
have been identified as potent mechanores-
ponsive factors (33) that respond to physical
cues, such as stretching (22, 34) and cell crowd-
ing (34), by translocating from the cytoplasm
to the nucleus. YAP/TAZ mechanobiology is
regulated by filamentous actin (F-actin) dy-
namics through Rho guanosine triphospha-
tases (GTPases), which probe the physical
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microenvironment via cell-matrix and cell-cell
adhesion complexes at the cell surface (35).
Thus, mechanosignaling by YAP and TAZ can
be modulated by modifiers of actin and Rho
GTPases such as cofilin, gelsolin, and F-actin–
capping protein (CAP-Z). In a two-dimensional
(2D) epithelial monolayer model of stretch,
cells under tensile stresses showed activation
of YAP/TAZ that led to cell proliferation (34)
and induced cell cycle entry (22). Activation
of the YAP/TAZ pathway contributes to tumor
malignancy in many ways, including cell pro-
liferation, cell cycle regulation, overcoming
anoikis and mitochondria-induced apoptosis,
inducing cancer stem cell functions, and ac-
celerating fibrosis and desmoplasia by activat-
ing CAFs (36).
As cancer growth causes crowding of cells in

the tissue, there is inevitably competition be-
tween cell populations for nutrients and free

space. Cell competition has recently received
attention because of its relevance in devel-
opment, where it controls organ size and
eliminates suboptimal cells (37), and in tumor-
igenesis, where cancer cells expand into new
space by damaging and killing the normal sur-
rounding cells (38). Compressive and tensile
stresses, generated from the differential growth
of cell layers, has been suggested to be a me-
chanical driver of cell competition (39). How
cancer cells are able to outcompete the sur-
rounding normal cells, which experience sim-
ilar solid stresses at the tumor-host interface,
remains an open question.
Because solid stresses are harbored inmatrix

components, many of the resulting problems
can be reversed by drugs that degrade matrix
components and reduce fibrosis. For example,
losartan, an angiotensin receptor 1 blocker, re-
duces both collagen I and HA by inhibiting

TGF-b (16). In preclinical models of PDAC, lo-
sartan alleviates solid stress and decompresses
blood vessels, enhancing chemotherapy and
increasing overall survival (16). This strategy is
currently being tested in a randomized clinical
trial (NCT01821729) based on promising re-
sults of a phase 2 trial (40). In another suc-
cessful PDAC preclinical study, PEGPH20 (a
pegylated recombinant humanhyaluronidase)
that reduced fibrosis in these tumors increased
overall survival when combined with chemo-
therapy (41). Other approaches that have shown
similar potential in preclinical models include
inhibiting the vitamin D receptor (42), sonic
hedgehog signaling (43), and C-X-C motif che-
mokine receptor 4 signaling (44). Targeting
the vitamin D receptor is currently being tested
in patients (NCT03472833). However, both
PEGPH20 and sonic hedgehog targeting have
been unsuccessful in clinical trials (45), high-
lighting the need for a deeper understanding
of these pathways. Alleviating stress using these
approaches may improve response to various
treatments, such as immunotherapy (44, 46).

Interstitial fluid pressure

In most organs, the blood arrives via arteries
and leaves via veins, and any excess tissue fluid
is drained by lymphatic vessels. This main-
tains fluid homeostasis and results in near-
zero IFP in most normal organs. This balance
is disturbed by abnormalities in tumors, in-
cluding hyperpermeable blood vessels and
compression of blood and lymphatic vessels
by solid stress. Leaky vessels, combined with
a compromised drainage system, result in high
IFP (Fig. 2), ranging from<1 kPa (7.5mmHg) in
brain tumors to 5 kPa (37 mmHg) in renal cell
carcinomas. IFP is fairly uniform within a tu-
mor and drops precipitously in the tumor
margin, which generates a fluid flow toward
lymphatic vessels in the surrounding normal
tissue, where IFP is close to 0 mmHg. Note
that IFP and solid stress are independent
mechanical stresses with distinct origins and
consequences (47).
High IFP in tumors was first reported in

1950 (48) and then later studied in detail
throughexperiments andcomputationalmodels
(49, 50). Elevated fluid pressure drives intersti-
tial flow in the tumormargin, exposing extravas-
cular cells to shear stress. Because flow velocity
and shear stresses depend strongly on the pore
size between cells and matrix components,
shear stresses likely vary widely, even along
individual cell membranes. The shear stresses
affect the biology of cancer and stromal cells in
several ways (51) (Fig. 3), including activation
of fibroblasts (51); modulation of endothelial
sprouting (52), which affects angiogenesis and
lymphangiogenesis (51); induction of matrix
metalloproteinase (MMP) activity and cell mo-
tility (53); and activation of cancer cell mi-
gration (54) and invasion (55). Fluid flow has
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Fig. 1. Physical traits of cancer. On the basis of the advancements of the past few decades, we suggest
that the physical traits of cancer can be categorized into four major groups: (i) elevated solid stress,
(ii) elevated interstitial pressure, (iii) increased stiffness, and (iv) altered architecture and geometry. Solid
stresses and fluid pressure are the mechanical stresses (force per unit area) contained in, and transmitted
by, solid and fluid phases of the tumor, respectively. Solid stresses and fluid pressure are reported in pascals
or millimeters of mercury (1 mmHg ≅ 133.3 Pa). Stiffness (elasticity) is defined as the resistance of a material
to deformation in response to an applied force, and elastic modulus is reported in pascals. Viscoelasticity
defines the resistance of the material to deformation in response to a force applied at a given rate. Most
soft tissues, including tumors, exhibit higher resistance to force (e.g., higher stiffness) when the force
is applied at high rates. Solid stress, the latent or stored stress in a tissue, should not be confused with
elasticity (stiffness) or viscoelasticity (time-dependent stiffness), which define how much or how fast,
respectively, a tissue will deform if a force is applied. A tissue can be stiff (rigid) or soft (compliant), and,
independently, it can be under compressive and/or tensile solid stresses (4) or, like most normal tissues, it
can be unstressed. The proposed physical traits characterize most cancers, and their distinct origins and
consequences make them indispensable to a comprehensive picture of cancer.
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also been shown to induce cell cycle arrest
through integrin signaling (56). Because im-
mune cells are also responsive to interstitial
flow, these fluid forces are likely also involved
in regulation of immunity (51). Mechanisms for
mechanotransduction of flow signals include
sensors within the focal adhesions (54, 57), the
cell glycocalyx (55), cell-cell junctions (58, 59),
ion channels (60), Notch receptor (61), and
cilia (62). The resulting signals can up-regulate
TGF-b expression and activate YAP/TAZ down-
stream pathways (51, 63, 64).
In addition to direct mechanotransduction

mechanisms, fluid flow created by IFP gradients
can affect tumor progression and treatment

response in multiple ways. High IFP hinders
the convection of drugs from the vasculature
into the bulk of the tumor (2, 49). Moreover,
the steep IFP gradient at the tumor boundary
drives the flow of interstitial fluid from the tu-
mor toward the surrounding tissue. This flow
can promote tumor invasion and growth by fa-
cilitating the transport of growth factors and
cancer cells into the surrounding normal tissue
and peritumor lymphatics (65). The outward
fluid flow may also facilitate angiogenesis in
the tumor margin (52) and remove therapeu-
tic agents from the tumor, reducing drug re-
tention times (65). IFP has also been proposed
as a diagnostic marker differentiating malig-

nant frombenign breast, head, and neck tumors
(66, 67) and as a prognostic marker in some
clinical studies (68).
Therapeutic strategies for correcting the fluid

abnormalities in tumors have also been devel-
oped. One approach is to normalize the leaky
and tortuous vasculature so that the intralumi-
nal pressure operating within microvessels is
not transmitted directly to the surrounding
interstitium. Vascular normalization restores
abnormal tumor vasculature to a more func-
tional state closer to that of normal vessels.
Using judicious doses of antiangiogenic thera-
py to normalize tumor vasculature (17, 65, 69),
it is possible to increase pericyte coverage,
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Fig. 2. Origins of the physical traits
of cancer. Physical interactions of
cancer cells with stroma give rise to
physical traits of tumors through distinct
and interconnected mechanisms. Leaky
and compressed blood vessels and
nonfunctional lymphatics lead to
increased interstitial fluid pressure
within the tumor and interstitial fluid
flow in the tumor margin. Cellular
proliferation, matrix deposition, cell con-
traction, and abnormal growth patterns
lead to compressive and tensile solid
stresses. Matrix deposition and cross-
linking cause increased stiffness in
tumors. Cell contraction, matrix deposi-
tion, and cross-linking also alter the
architecture of the tissue. The physical
traits also interact with each other; solid
stresses compress blood and lymphatic
vessels and contribute to increased fluid
pressure in tumors. Tensile solid
stresses result in stretched and aligned
matrix, and through strain-stiffening,
solid stresses also increase tumor stiff-
ness. Fluid flow activates fibroblasts,
which then contribute to increased solid
stresses and stiffness values and alter
ECM architecture.
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Fig. 3. Pathways associated with the physical traits of cancer. Physical traits of cancer activate a large cascade of mechanoresponsive pathways in cancer
cells and stromal cells, including endothelial, epithelial, mesenchymal, and immune cells. Pathways such as integrin and YAP/TAZ are responsive to all four physical
traits, whereas many other pathways appear to be more specific.
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decrease vessel leakiness, increase tumor vas-
cular perfusion, and decrease IFP. In the clin-
ic, there are many agents with the ability to
normalize vessels, including bevacizumab, an
antibody that blocks vascular endothelial growth
factor A (VEGF-A) and inhibitors of VEGF re-
ceptor tyrosine kinases, which have been ap-
proved for more than a dozen tumor types (70).
As mentioned in the previous section, accu-
mulation of solid stress also disrupts the vas-
cular flow in tumors by compressing the more
fragile outflow vessels (veins and lymphatics),
which contributes to the elevated IFP. There-
fore, alleviating solid stress can also decom-
press blood and lymphatic vessels, resulting
in better perfusion and more normal levels
of IFP (7).

Stiffness (elasticity)

Stiffness, also known as rigidity or elastic mod-
ulus, is defined as the resistance of a material
to deformation in response to a force applied
at a very slow rate (quasi-statically). Stiffness is
an intrinsic material property of the tissue—
unlike solid or fluid mechanical stresses, which
describe forces exertedonamaterial—and ranges
from 1 kPa in brain tumors to 70 kPa in cho-
langiocarcinomas (2).
Increased tissue stiffness is the most tangi-

ble and best-recognized mechanical abnormal-
ity in tumors. Stiffness has traditionally been
used as a diagnostic marker (71) and more re-
cently as a prognostic factor (72, 73). Inmultiple
cancer types, including breast (74), pancreatic
(75), liver (76), and prostate (77), malignant tu-
mors have been shown to be considerably stiffer
than benign tumors. In 2006, stiffness sensing
was implicated in determining cell lineage (78).
Today, there are numerous studies showing
how thematerial properties—in particular, the
stiffness of themicroenvironment—are central
to many traits of cancer (79), including prolif-
eration (80, 81), angiogenesis (82), metabolism
(83), invasion (84–86), andmigration andme-
tastasis (87–89) (Fig. 3).
Stiffening promotes tumor progression in

many tumor types, including breast (80, 90),
pancreatic (85, 91), colorectal (92), andbrain (93).
Increased stiffness can also promote an inva-
sive phenotype in cancer cells (84–86), induce
invasion and metastasis (87, 88, 94, 95), en-
hance immune cell infiltration (90), facilitate
the epithelial-mesenchymal transition through
TGF-b (96), promote stem cell differentiation
(97), alter growth factor secretion and sig-
naling, and increase angiogenesis and vessel
permeability (82).
One of the primary causes of matrix stiff-

ening is increased deposition and cross-linking
of ECM (Fig. 2). In fibrotic tumors, CAFs are
primarily responsible for collagen production,
and these cells have more actin stress fibers,
alpha smoothmuscle actin, and focal adhesions
than nonactivated fibroblasts (14, 98). Collagen

fibers canbe cross-linked to different degrees by
lysyl oxidase, andmore cross-linking increases
ECM stiffness. Transglutaminase 2, a calcium
ion–dependent enzyme abundantly expressed
by pancreatic cancer cells, also contributes
to covalent collagen cross-linking and, conse-
quently, activation of fibroblasts in pancreatic
cancer (99). IncreasedECMstiffness and TGF-b
signaling activate fibroblasts to become CAFs,
initiating a positive feedback loop that further
enhances ECM stiffening. The profibrotic acti-
vation of cells in response to substrate stiffness
can be perpetuated by mechanical memory,
with microRNA 21 serving as one of the mem-
ory keepers (100).
Mechanical stresses can also alter the stiff-

ness of the matrix through a phenomenon
called strain-stiffening (101). Some collagen
fibers are under tension, either because of cell
contraction (102, 103) or because tumor growth
causes local expansion, stretching the ECM
(4). These tensile stresses increase the stiffness
of the collagen network, which in turn further
activates the focal adhesion contractility of the
CAFs in their vicinity (104), leading to a vicious
cycle ofmatrix deposition and stiffening.Matrix
contraction by myofibroblasts is related to
wound contraction, which resolves in wound
healing but not in tumors (105, 106). In addi-
tion to stretching, the compressive stresses
produced by tumor growth (5) can increase
the stiffness of both normal and tumor tissue,
as demonstrated with normal brain and glio-
ma tissue (107). Strain-stiffening also happens
at the subcellular level; mechanical stretch ap-
plied to nuclei can increase the stiffness of the
nucleus through phosphorylation of emerin,
one of the nuclear envelope proteins that pro-
vides structural stability to the nucleus (108).
There is considerable evidence that increased

stiffness in breast tissue is associated with
higher risk of breast cancer (72), and mammo-
graphic density (which is related to tissue stiff-
ness and density) has been proposed as a
predictor of poor survival (73, 109). In PDAC,
increased stiffness negatively correlates with
the response to chemotherapy (91). Consist-
ently, in lung adenocarcinoma tumors, the
stiffness of regions with dense ECM increases
with tumor stage. Interestingly, however, the
stiffness of the cells showed an inverse rela-
tionshipwith tumor stage (110), suggesting that
cytoskeleton stiffness, in addition to ECM stiff-
ness, can be used to stage lung tumors.
Two major pathways that are sensitive to

changes in stiffness are focal adhesion kinase
(FAK), which is induced through integrin liga-
tion (111), and theHippo pathway transcription
factors YAP and TAZ (112, 113). YAP activated by
increased ECM stiffness through Rho-associated
protein kinase (ROCK), myosin, and Src activa-
tion further promotes CAF activity, which fuels
a feed-forward self-enhancing loop to maintain
the CAF phenotype (113).

Matrix stiffness and tumor cell metabolism
are interdependent (83, 114). The cell meta-
bolic rate increases when cells migrate on stiff
substrates or through confined spaces (115).
On the other hand, targeting abnormal tumor
metabolism with metformin, an agonist of
adenosine monophosphate–activated protein
kinase, reduces fibrosis and stiffness (83, 116).
Although increased tumor stiffness increases
the malignancy of tumors, there may also be
opportunities to take advantage of the increased
stiffness by developing mechanosensitive treat-
ments (117). Other targets for reversing fibrosis
include the angiotensin system, which modu-
lates CAF activity through the TGF-b and CTGF
signaling pathways, contributing to fibrosis
(16). ECM components can also be targeted
directly, for example, by enzymatic depletion
of HA and/or collagenase (2).

Matrix architecture and cell geometry

Organs are constructed of collections of cells
and matrix components arranged with speci-
fic microarchitecture, which has evolved to
optimize the stability, efficiency, and function
of the tissue. For example, gut epithelium exists
in a 2D sheet, with the basement membrane
on one side and the lumenal space on the
other. This asymmetric arrangement, or polar-
ization, allows the cell to respond to fluid
forces on the luminal side, monitor the base-
ment membrane and the underlying tissue
through focal adhesions, and sense any changes
in the neighboring cells through cadherin ad-
hesions and gap junctions. Other cells require
differentmicroanatomy; for example, myocytes
form aligned bundles in muscle tissue, and
neurons exist as an interconnected linear net-
work embedded in other tissues. These struc-
tures form during development, and in adult
tissue, the immediatemicroenvironment (com-
position and geometry) of each cell serves as
a cue for homeostasis or transformation and
morphogenesis. For example, endothelial mor-
phogenesis is triggered when blood flow stops
and thrombosis fills the blood vessel lumen,
resulting in vasculogenesis or angiogenesis. This
process is, in part, induced by the lack of blood
shear stresses and by the presence of the in-
travascular fibrin contacting the luminal side
of the endothelial cells.
As tumors grow, both tumor and associated

normal tissues are structurally disrupted in an
ongoing, dynamic process that disturbs ho-
meostasis. Cell overcrowding, protease activ-
ity, and changes in matrix production can all
alter cell-matrix and cell-cell associations,
signaling morphogenesis. Indeed, the much-
studied epithelial-to-mesenchymal transition
is an example of a morphogenic switch of cells
from a 2D epithelial, surface-dependent geom-
etry to a mesenchymal, infiltrative phenotype,
where the cell is now comfortably surrounded
by ECM.
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The local tissue architecture plays a central
role in cancer progression and treatment
response, independent of the solid stress,
fluid forces, and stiffness of the microenviron-
ment (Fig. 3). A simple and familiar demon-
stration of the importance of architecture is
surface-dependent growth. Normal and can-
cerous breast epithelial cells have drastically
different morphology and growth rates when
cultured in 3D matrices but are difficult to
distinguish when cultured on 2D surfaces (118).
This is an example of the dynamic reciprocity
between tissue architecture, function, and neo-
plastic transformation, as cells not only create
their environment but are also affected by it.
Studies of 3D matrix architecture, mainly fo-
cused on collagen, show that collagen organi-
zation can be a prognostic biomarker (119) and
that certain arrangements facilitate cancer cell
migration, proliferation, and actomyosin con-
tractility (120, 121). Studies designed to reca-
pitulate various matrix architectures show that
Rho/ROCK-mediated matrix alignment is a
key step that promotes cancer cell migration
in the early stages of invasion (122). Collagen
alignment also modulates MMP-dependent
mechanisms (123) and integrin b1 expression
(124), which affect cells’ ability to migrate.
Many important discoveries regarding the

influence of cell microenvironment on pheno-
type come from carefully designed in vitro
studies. One of the earliest studies linking
cell geometry to biological responses was re-
ported by Folkman andMoscona in 1978 (125);
they showed that DNA synthesis decreases
as cell-substrate contact area is reduced. In
another seminal study, Chen et al. were able
to control growth and viability by confining
cells to micropatterned islands, which con-
trolled the extent of cell spreadingwhilemain-
taining the total cell-substrate contact area
(126). This model system has later been ex-
tended to micro- and nanopillar substrate
systems (127) that allow specification of cell
contact area in addition to substrate stiffness
by varying pillar length, width, and spacing.
Mechanistic studies using these model sys-
tems showed that cell proliferation is regulated
by cell shape through two major mechanisms:
(i) by regulating the cellular contractility
through myosin light chain phosphorylation
via ROCK (127, 128), and (ii) by phosphoryl-
ation of retinoblastoma protein (RB) (129). In
addition to cell shape, there is recent evidence
that cell volume can also affect cell response,
including cell stiffness and stem cell fate,
through water efflux (130). Surface features
also affect the migration of cells, through a
process called topotaxis (131).
Cell geometry also influences nuclear geom-

etry, which can control gene expression (28, 29).
Cells spread on a substrate have a more flat-
tened nucleus than the same cells in 3D culture.
Such shape dynamics and nuclear deforma-

tions affect perinuclear actin and micro-
tubule networks (132), resulting in an altered
arrangement of chromosomes, changes in
gene expression, and YAP/TAZ nucleus trans-
location (34, 112). Cell and nuclear geometries
are also altered during cell migration through
constrictions.Migration of cancer cells (133–135),
leukocytes (135), and primary mesenchymal
stem cells (134) through pores smaller than
their nucleus diameter results in severe com-
pression and deformation of the nucleus, lead-
ing to loss of integrity of the nuclear envelope,
herniation of chromatin via rupture through
the nuclear membrane, and eventually DNA
double-strand breaks (133–135), chromosomal
aberration, and genomic instabilities (134).
The architecture of the local environment

can also drastically affectmigration (136).When
cells are confined such that the plasma mem-
brane experiences deformation, intercellular
calcium ions are allowed to enter the cyto-
plasm through the stretch-activated ion chan-
nel Piezo1. This causes suppression of protein
kinase A activity, which regulates migration of
carcinoma cells via RhoA and Rac1 (137).
In addition to affecting cell migration, pore

size and microarchitecture of the ECM deter-
mine the diffusion and convection of cytokines
and therapeutic reagents. The key relevant pa-
rameters include pore size of vasculature for
intravascular transport (138); pore size, charge,
and orientation of ECM constituents (139, 140)
for interstitial transport; and size, shape (e.g.,
spherical versus rod shape), and surface chem-
istry (e.g., cationic versus anionic) of the the-
rapeutic reagents (141).

Outlook

The tumor microenvironment is aberrant both
biologically and physically. The growing appre-
ciation of the role of the physical microenvi-
ronment in cancer has led to several discoveries
about the origins and consequences of the
physical traits, which have resulted in new
targets and treatment strategies in patients.
Close collaboration between cancer biologists,
clinicians, physical scientists, engineers, and
data scientists will be required to ensure that
research into the physical sciences of cancer—a
highlymultidisciplinary area—remains an active
andprogressive subfieldof cancer research.Many
of the concepts at play are nonintuitive and
require rigorous and broad understanding of
both the physical and biological aspects of cancer.
Continued growth of this subfield will re-

quire overcoming a number of challenges. As
these proposed physical traits have received less
research attention than their biological hall-
mark counterparts, the available tools for
studying them are limited. Thus, more and
improved in vivo and in vitro model systems
are needed to recapitulate and study tumor
physical abnormalities. Better model systems
will aid in thediscoveryof solid stress–responsive

pathways and delineate the biological conse-
quences of solid stress from other traits, for
example, increased stiffness. Similarly, addi-
tional measurement tools are needed to distin-
guish different causes of solid stress. Delineating
the contribution of different factors to the
accumulation of solid stress, such as cell-cell
and cell-matrix interactions, is an unmet need
with potential for revealing additional ther-
apeutic targets for reducing solid stress in
tumors and normalizing the tumor physical
microenvironment.
While malignant and benign tumors have

been shown to differ in stiffness (74–77) and
IFP (66), similar comparative evaluations of
other physical traits, specifically solid stress
and microarchitecture, are lacking. Further-
more, we know little about the origins of the
differences in any of the physical traits of can-
cer in benign versus malignant tumors. Un-
covering the potential mechanisms, such as
infiltration of stroma, mutational loads, con-
tractility of cancer and stromal cells, and col-
lagen shell separating tumor stroma, should
help researchers better understand the causes
and consequences of physical cancer traits and
their bidirectional links with the biological
hallmarks of cancer.
Another promising area of research is the

role that physical traits of cancer play in cancer
cell biology at different stages of tumorigenesis,
from early tumor formation to transforma-
tion, local invasion of basement membrane,
and then dissemination and colonization at a
distant site. The contribution and responsive-
ness of cancer cells to physical traits of cancer
may vary at different stages of tumorigenesis
and with different genetic aberrations. These
factors may explain why certain transformed
cells lose responsiveness to substrate stiffness
(142), while other studies have shown that sub-
strate stiffness promotes proliferation of cancer
cells (80, 81).
Although it may appear that the physical

traits of cancer discussed in this Review are
specific to solid cancers, there is increasing
evidence that they may also contribute to the
progression and treatment response of hema-
tological cancers. Phenomena such as swelling
of lymph nodes, spleen, and even the liver
subject both cancerous cells and normal im-
mune cells to abnormal mechanical forces,
which have yet to be studied in depth but may
have important consequences on cell biology
andanticancer immunity.Overcrowding of cells
in the confined spaces of the vasculature and
bone marrow results in a microenvironment
with limited oxygen and nutrients and poten-
tially important physical considerations that
are currently unexplored. For example, inmul-
tiple myeloma (143), patients experience bone
pain and spinal cord compression due to pro-
liferation of cancer cells in confined spaces
near nerves. The bonemarrowniche—the origin
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ofmost liquid and hematopoietic cancers—
represents a distinctivemechanical environment
consisting of viscoelastic tissue bathed in flow-
ing fluid and surrounded by bone (144). The
role of the physical properties of the bone mar-
row niche has recently gained attention: ECM
stiffness was shown to alter the proliferation
and treatment response of myeloid leukemia
in an in vitro model (145). The physical prop-
erties of the bonemarrow also determine drug
delivery and the progression and invasion of
liquid cancers (146). Finally, similar to car-
cinoma and sarcoma cells, hematologic cancer
cells are also subjected to shear stress in sys-
temic circulation.
Despite numerous studies on the role of

physical cancer traits in the progression and
initial treatment response of several tumor types,
recurrence and secondary treatment resistance
have not been studied in depth in association
with the physical tumor microenvironment.
However, there is early evidence linking the
physical traits to the recurrence of cancer; in
a mouse model of breast cancer, compliant
tumors had higher rates of recurrence than
stiffer counterparts (147). In a clinical study
of 175 patients with hepatocellular carcinoma
(HCC), the stiffness of the spleen was an in-
dependent predictor of tumor recurrence (148),
and in another study, recurrence rates of HCC
after thermal ablation correlated with tissue
stiffness (149). These limited but promising
studies highlight the need for more thorough
investigations of the role of physical traits of
cancer in recurrence and secondary treatment
resistance. Finally, emerging data indicate that
obesity increases the incidence of cancer, aids
tumor progression, impairs treatment response,
and facilitates tumor recurrence, but that phys-
ical exercise can ameliorate many of these ad-
verse consequences of obesity. How obesity and
physical exercise differentially affect the phys-
ical traits of cancer may reveal previously un-
explored ways to slow tumor progression and
improve treatment response (116, 150).
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Physical traits of cancer
The biological and physical properties of tumors contribute to their growth and to treatment outcome. Although intense
research efforts have helped to delineate cancer biology, the physics of cancer has only emerged in relatively recent
times as a key area of research. Nia et al. reviewed the physical features that are common to tumors and that limit
successful treatment: solid stresses, interstitial fluid pressure, stiffness (rigidity), and architecture and organization
of tumor constituents. The authors provide a conceptual framework and discuss the origins of these distinct physical
traits of cancer and how they enable and synergize with aberrant cancer biology to fuel cancer initiation, progression,
immune evasion, and treatment resistance.
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