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The fact that acoustic radiation from a violin at
air-cavity resonance is monopolar and can be
determined by pure volume change is used to help
explain related aspects of violin design evolution. By
determining the acoustic conductance of arbitrarily
shaped sound holes, it is found that air flow at
the perimeter rather than the broader sound-hole
area dominates acoustic conductance, and coupling
between compressible air within the violin and its
elastic structure lowers the Helmholtz resonance
frequency from that found for a corresponding rigid
instrument by roughly a semitone. As a result of the
former, it is found that as sound-hole geometry of
the violin’s ancestors slowly evolved over centuries
from simple circles to complex f-holes, the ratio of
inefficient, acoustically inactive to total sound-hole
area was decimated, roughly doubling air-resonance
power efficiency. F-hole length then slowly increased
by roughly 30% across two centuries in the renowned
workshops of Amati, Stradivari and Guarneri,
favouring instruments with higher air-resonance
power, through a corresponding power increase
of roughly 60%. By evolution-rate analysis, these
changes are found to be consistent with mutations
arising within the range of accidental replication
fluctuations from craftsmanship limitations with
subsequent selection favouring instruments with
higher air-resonance power.

2015 The Author(s) Published by the Royal Society. All rights reserved.

 on October 30, 2015http://rspa.royalsocietypublishing.org/Downloaded from 

http://crossmark.crossref.org/dialog/?doi=10.1098/rspa.2014.0905&domain=pdf&date_stamp=2015-02-11
mailto:makris@mit.edu
http://orcid.org/0000-0003-1970-9901
http://rspa.royalsocietypublishing.org/


2

rspa.royalsocietypublishing.org
Proc.R.Soc.A471:20140905

...................................................

1. Introduction
Acoustic radiation from a violin at its lowest frequency resonance is monopolar [1] and can be
determined by pure volume change [2–4]. We use this to help explain certain aspects of violin
design evolution that are important to acoustic radiation at its lowest frequency resonance. This
lowest frequency resonance is also known as air cavity resonance and Helmholtz resonance [3–
5]. Air cavity resonance has been empirically identified as an important quality discriminator
between violins [6–8] and is functionally important because it amplifies the lower frequency range
of a violin’s register [7–9]. It corresponds to the violin’s lowest dominant mode of vibration. Since
most of the violin’s volume is devoted to housing the air cavity, the air cavity has an important
effect on a violin’s acoustic performance at low frequencies by coupling interior compressible air
with the violin’s elastic structure and air flow to the exterior via sound holes.

Owing to its long-standing prominence in world culture, we find enough archaeological
data exist for the violin and its ancestors to quantitatively trace design traits affecting radiated
acoustic power at air cavity resonance across many centuries of previously unexplained change.
By combining archaeological data with physical analysis, it is found that as sound hole geometry
of the violin’s ancestors slowly evolved over a period of centuries from simple circular openings
of tenth century medieval fitheles to complex f-holes that characterize classical seventeenth–
eighteenth century Cremonese violins of the Baroque period, the ratio of inefficient, acoustically
inactive to total sound hole area was decimated, making air resonance power efficiency roughly
double. Our findings are also consistent with an increasing trend in radiated air resonance power
having occurred over the classical Cremonese period from roughly 1550 (the Late Renaissance) to
1750 (the Late Baroque Period), primarily due to corresponding increases in f-hole length. This is
based upon time series of f-hole length and other parameters that have an at least or nearly first-
order effect on temporal changes in radiated acoustic power at air cavity resonance. The time
series are constructed from measurements of 470 classical Cremonese violins made by the master
violin-making families of Amati, Stradivari and Guarneri. By evolution rate analysis, we find
these changes to be consistent with mutations arising within the range of accidental replication
fluctuations from craftsmanship limitations and selection favouring instruments with higher
air-resonance power, rather than drastic preconceived design changes. Unsuccessful nineteenth
century mutations after the Cremonese period known to be due to radical design preconceptions
are correctly identified by evolution rate analysis as being inconsistent with accidental replication
fluctuations from craftsmanship limitations and are quantitatively found to be less fit in terms of
air resonance power efficiency.

Measurements have shown that acoustic radiation from the violin is omni-directional at the air
cavity resonance frequency [1]. These findings are consistent with the fact that the violin radiates
sound as an acoustically compact, monopolar source [2–4], where dimensions are much smaller
than the acoustic wavelength, at air resonance. The total acoustic field radiated from a monopole
source can be completely determined from temporal changes in air volume flow from the source
[2–4,10,11]. For the violin, the total volume flux is the sum of the air volume flux through the
sound hole and the volume flux of the violin structure. Accurate estimation of monopole radiation
at air resonance then only requires accurate estimation of volume flow changes [2,3,11,12] rather
than more complicated shape changes of the violin [8,9,13] that do not significantly affect the
total volume flux. By modal principles, such other shape changes may impact higher frequency
acoustic radiation from the violin. Structural modes describing shape changes at and near air
resonance have been empirically related to measured radiation, where modes not leading to
significant net volume flux, such as torsional modes, have been found to lead to insignificant
radiation [8,13]. Since acoustic radiation from the violin at air resonance is monopolar [1], and
so can be determined from changes in total volume flow over time, a relatively simple and clear
mathematical formulation for this radiation is possible by physically estimating the total volume
flux resulting from the corresponding violin motions that have been empirically shown [13] to
lead to the dominant radiation at air resonance.

Here we isolate the effect of sound hole geometry on acoustic radiation at air resonance by
developing a theory for the acoustic conductance of arbitrarily shaped sound holes. We use this
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to determine limiting case changes in radiated acoustic power over time for the violin and its
ancestors due to sound-hole change alone. These limiting cases are extremely useful because they
have exact solutions that are only dependent on the simple geometric parameters of sound hole
shape and size, as they varied over time, and are not dependent on complex elastic parameters of
the violin. We then estimate monopole radiation from the violin and its ancestors at air resonance
from elastic volume flux analysis. This elastic volume flux analysis leads to expected radiated
power changes at air resonance that fall between and follow a similar temporal trend as those
of the geometric limiting cases. The exact solution from rigid instrument analysis leads to a
similar air resonance frequency temporal trend as elastic analysis but with an offset in frequency
from measured values by roughly a semitone. Elastic volume flux estimation, on the other hand,
matches measured air resonance frequencies of extant classical Cremonese instruments to roughly
within a quarter of a semitone or a Pythagorean comma [14]. This indicates that rigid analysis may
not be sufficient for some fine-tuned musical applications.

While Helmholtz resonance theory for rigid vessels [3–5] has been experimentally verified
for simple cavity shapes and elliptical or simple circular sound holes (e.g. [15–18]) as in the
guitar, it has not been previously verified for the violin due to lack of a model for the acoustic
conductance of the f-hole. Parameter fit and network analogy approaches to violin modelling
[19], rather than fundamental physical formulations that have been developed for the violin and
related instruments [5,9,20,21], have led to results inconsistent with classical Helmholtz resonance
theory [3–5] even for rigid vessels. Here it is found both experimentally and theoretically that
when violin plates are rigidly clamped, the air-cavity resonance frequency still follows the classic
rigid body dependence on cavity volume and sound hole conductance of Helmholtz resonator
theory [3–5]. It is also found that when the plate clamps are removed, air-cavity resonance
frequency is reduced by a percentage predicted by elastic volume flux analysis, roughly a
semitone. Discussions on the dependence of air resonance frequency, and consequently acoustic
conductance, on sound hole geometry have typically focused on variations in sound hole area
(e.g. [22–25]). The fluid-dynamic theory developed here shows that the conductance of arbitrarily
shaped sound holes is in fact proportional to the sound hole perimeter length and not the area.
This is verified by theoretical proof, experimental measurement and numerical computation. This
perimeter dependence is found to be of critical importance in explaining the physics of air-flow
through f-holes and sound radiation from a violin at air resonance. It is also found to have
significantly impacted violin evolution.

2. Determining the acoustic conductance of arbitrarily shaped sound holes
Sound hole conductance C [3,4] is related to air volume flow through the sound hole by

m̈air(t) = C�P(t), (2.1)

where �P(t) is the pressure difference across the hole-bearing wall, for monopolar sound sources
[2–4] like the violin at the air resonance frequency, and ṁair(t) is mass flow rate through the
sound hole [2], which is the product of air volume flow rate and air density, at time t. The
acoustic pressure field radiated from a sound hole of dimensions much smaller than the acoustic
wavelength is proportional to the mass flow rate’s temporal derivative [2–4], and consequently
the temporal derivative of the air volume flow rate and conductance via equation (2.1). Analytic
solutions for conductance exist for the special cases of circular and elliptical sound holes [3,4],
where conductance equals diameter in the former, but are not available for general sound
hole shapes.

A theoretical method for determining the acoustic conductance of an arbitrarily shaped
sound hole is described here. Acoustic conductance is determined by solving a mixed boundary
value problem [2–4,26] for approximately incompressible fluid flow through a sound hole.
This approach is used to theoretically prove that conductance is approximately the product of
sound hole perimeter length L and a dimensionless shape factor α in §3. It is then numerically
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implemented in §§4 and 5 to quantitatively analyse the evolution of violin power efficiency at air
resonance. It is experimentally verified for various sound hole shapes, including the violin f-hole,
in §§4, 5 and 7. The approach described here is for sound hole dimensions small compared with
the acoustic wavelength, as is typical at the air resonance frequency of many musical instruments,
including those in the violin, lute, guitar, harp and harpsichord families.

Assuming irrotational fluid flow with velocity potential φ(x, y, z), the boundary value problem
[2–4,26] is to solve Laplace’s equation in the upper half plane above a horizontal wall with the
boundary conditions that (i) φ = 1 over the sound hole aperture in the wall, (ii) ∂φ/∂n = 0 on the
wall, corresponding to zero normal velocity, and (iii) φ vanishes as the distance from the opening
approaches infinity. The normal fluid flow velocity through the sound hole is

un = ∂φ

∂n
(2.2)

and the conductance C is

C = 1
2

∫∫
S

un dS, (2.3)

where S is the sound hole area. From the boundary integral formulation [27], we develop a
robust boundary element method to solve the stated boundary value problem for φ and obtain
the exact solution for the normal velocity un(x, y, z) on the opening from which conductance is
then determined [3,4]. This method is found to be effective for arbitrary sound hole shapes and
multiple sound holes. In the limit as the separation between multiple sound holes approaches
infinity, the total conductance equals the sum of the conductances of the individual sound holes.
When the separation between sound holes is small, the total conductance is smaller than the sum
of the conductances of individual sound holes. For typical Cremonese violins, the conductance
theory developed here shows that the interaction of two f-holes reduces the total conductance by
roughly 7% from the sum of conductances of individual f-holes. This leads to a roughly 4% change
in air resonance frequency, which is a significant fraction of a semitone, and a roughly 15% change
in radiated acoustic power at air resonance. The conductance formulation of equation (2.3) is for
wall thickness, hsh, asymptotically small near the sound hole, hsh � L, which is generally the case
for the violin and its ancestors as well as guitars, lutes and many other instruments. The effect of
finite wall thickness on C can be included by use of Rayleigh’s formulation [3], which becomes
negligible for sufficiently thin wall thickness at the sound hole.

For the special case of an ellipse, both perimeter length [28] and Rayleigh’s analytic solution
for the conductance of an ellipse [3] are directly proportional to the ellipse’s major radius, and
so are proportional to each other for a fixed eccentricity. In the elliptical case, for example,
the eccentricity determines the constant of proportionality, i.e. the shape factor α, between the
conductance and the perimeter length. With only the ellipse solution available, Rayleigh observed
that sound hole conductance ‘C varies as the linear dimension’ [3] of the sound hole, but he did
not supply a general proof or describe the physical mechanisms leading to this dimensionality.

3. Theoretical proof of the linear proportionality of conductance on sound hole
perimeter length

Here the conductance of a sound hole is proved to be linearly proportional to sound hole
perimeter length for L � hsh. Total sound hole area S in equation (2.3) can be subdivided into
N elemental areas sj, which share a common vertex inside S, such that the total sound hole
conductance from equation (2.3) is

C = 1
2

N∑
j=1

∫∫
sj

un(x, y) dS, (3.1)
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where S = ∑N
j=1 sj, with sj containing a piece-wise smooth boundary element lj of the sound hole

perimeter. Using Stokes theorem, the integral in equation (3.1) can be written as
∫∫

sj

un(x, y) dS =
∮

Lj

A dx + B dy, (3.2)

where Lj is the total boundary contour of the elemental area sj and ∂B/∂x − ∂A/∂y = un(x, y).
The boundary value problem for φ(x, y, z) has a special feature that un(x, y, z) has a weak,

integrable singularity at the perimeter of the sound hole. A local coordinate system (x′, y′) with x′
along lj and y′ = 0 can be defined on lj so that equation (3.2) reduces to

∫∫
sj

un(x, y) dS =
∫

lj
A′ dx′ +

∫
�lj

A′ dx′ + B′ dy′, (3.3)

where Lj = lj + �lj, ∂B′/∂x′ − ∂A′/∂y′ = un(y′) and un(y′) = a(y′)β from the three-dimensional
corner flow solution [29] with −0.5 < β < 0. Then A′ = b + (a/(β + 1))(y′)β+1 with B′ = 0 or an
arbitrary constant is a solution to ∂B′/∂x′ − ∂A′/∂y′ = un(y′), and so

∫
lj A′ dx′ = blj where a and

b are constants.
Then, from equations (3.1) and (3.3)

C = 1
2

N∑
j=1

blj + 1
2

N∑
j=1

∫
�lj

A′ dx′ + B′ dy′

︸ ︷︷ ︸
=0

, (3.4)

where the second term vanishes since the total contribution from the edges of sj other than lj
cancel out from Stokes theorem. Then, the conductance C of the sound hole

C = 1
2 bL = αL (3.5)

is proportional to the sound hole perimeter length L, b depends on the shape of the sound hole
and α = b/2 is the shape factor.

4. Evolution of sound hole shape from the tenth to the eighteenth centuries
and its effect on radiated air resonance power of the violin and its european
ancestors

Upper and lower limiting cases are determined by exact solutions for the changes in radiated
acoustic power over time due solely to changes in the purely geometric parameter of sound hole
shape for the violin and its ancestors (figure 1a, electronic supplementary material, §§1 and 2).
These are compared with the radiated power changes over time at air resonance from elastic
volume flux analysis (§9 and electronic supplementary material, §§3 and 4) (figure 1a). To isolate
the effect of sound hole geometry in figure 1a–c, all cases have constant forcing amplitude over
time, are normalized to the circular sound hole case, and have all other parameters including
sound-hole area and air cavity volume fixed over time. So, the basic question is, for the same
area of material cut from an instrument to make a sound hole, what is the isolated effect of the
shape of this sound hole on the air resonance frequency and the acoustic power radiated at this
resonance frequency?

The upper limiting case corresponds to the radiated power change of an infinite rigid sound
hole bearing wall, where the exact analytical solution for total power in a frequency band �f is
given by

Wwall = 1
T

∫
�f

|�P̃( f )|2
πρaircair

df C2 (4.1)
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Figure 1. Acoustic air-resonance power efficiency grows as sound hole shape evolves over centuries through the violin’s
European ancestors to the violin. (a) Change in radiated acoustic air-resonance power for an elastic instrument Wair-elastic

(equation (4.5)), rigid instrument Wair-rigid (equation (4.2)) and infinite rigid sound hole bearing wall Wwall (equation (4.1))
as a function of sound hole shape, where percentage change is measured from the circular sound hole shape. (b) Air-resonance
frequency for elastic instrument f air-elastic (equation (4.4)) and rigid instrument f air-rigid (equation (4.3)) as a function of sound
hole shape, normalized by f air-elastic for the circular opening (i). (c) Conductance C (equation (2.3)) and perimeter length L for
different sound hole shapes of fixed sound-hole area, normalized to be unity for the circular opening (i). Shape overlap occurred
between nearby centuries. Only sound hole shape is changed and all other parameters are held fixed and equal to those of the
1703 ‘Emiliani’ Stradivari violin [30]. The conductance of the two interacting sound holes for each instrument is determined from
equation (2.3). Data sources are provided in the electronic supplementary material, §5.
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as shown in the electronic supplementary material, §1, where �P̃(f ) is the frequency spectrum of
the time-varying pressure difference �P(t) across the hole bearing wall, where �P(t) ⇔ �P̃( f ) are
a Fourier Transform pair [31], T is the averaging time, ρair is air density, cair is the sound speed in
air and only C changes with sound-hole shape in figure 1.

The lower limiting case corresponds to the radiated power change of a rigid instrument with
a sound hole and air cavity where the exact solution for the total power in the half-power
bandwidth around the Helmholtz resonance [3–5] frequency is

Wair-rigid = ηrigidC, (4.2)

where the exact form of ηrigid is given and shown to be approximately independent of sound
hole shape, conductance and cavity volume in the electronic supplementary material, §2. The
corresponding rigid instrument Helmholtz resonance [3–5] frequency is

f air-rigid = cair

2π

(
C
V

)1/2
, (4.3)

where V is air cavity volume, and only C changes with sound-hole shape in figure 1.
In the case of elastic volume flux analysis (§9 and electronic supplementary material, §§3 and

4), derived from classical Cremonese violin measurements, the air resonance frequency f air-elastic

is found to be approximately

f air-elastic ≈ κV−0.6(hback)0.1(htop)0.01(ha)0.2C0.5 (4.4)

and the total power in the half-power bandwidth about the air resonance frequency is found to
be approximately

Wair-elastic ≈ βV−0.8(hback)0.6(htop)−0.2(ha)−0.9C1.7, (4.5)

where κ and β are empirically determined constants, hback, htop and ha are, respectively, the
back plate thickness, top plate thickness and mean air-cavity height, which are all assumed
constant over time, and only C changes over time in figure 1a–b to isolate the effect of sound-hole
shape change.

The power change curves in figure 1a can be distinguished by their dependencies on sound
hole conductance (figure 1c), where the upper limiting case has power change proportional to
C2 (equation (4.1)), the lower limiting case to C (equation (4.2)) and the elastic instrument case
to C1.7 (equation (4.5)). The expected dependencies on sound hole conductance are in the C1–C2

range, with elastic analysis falling roughly in the middle of the limiting cases determined by exact
analytic solutions.

When compared to the exact solutions of the limiting cases, elastic analysis, which involves
more parameters (§9), still yields a similar increasing trend in power change over time due to
geometric changes in sound hole shape alone (figure 1a). The elastic instrument dependence
follows a trend that is roughly the average of the upper and lower limiting cases (figure 1a).
If only sound hole shape varied, these results are consistent with roughly a doubling of power
as sound hole geometry of the violin’s prominent European ancestors slowly evolved over the
centuries from simple circular openings of tenth century medieval fitheles to complex f-holes
that characterize classical sixteenth–eighteenth century Cremonese violins of the late Renaissance
and Baroque period (figure 1(i)–(vi)). This doubling (figure 1a) is due to a gradual morphing to
more slender shapes that enables sound hole conductance to increase by roughly 50% through
triplication of perimeter length for the same sound hole area (figure 1c).

The rigid instrument resonance frequency f air-rigid (equation (4.3)) follows a similar
dependence on sound hole shape as that of elastic analysis but offset by roughly 6% (figure 1b),
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which will be experimentally confirmed in §§5 and 7. While this may seem to be a small
inconsistency, 6% corresponds to roughly a semitone [14], which suggests that idealized rigid
instrument analysis may lack the accuracy needed for some fine-tuned musical pitch estimates.

The resulting air resonance power and frequency dependencies shown in figure 1a–b indicate
that linear scaling of a violin, or related instrument, by pure dilation will not lead to an instrument
with linear proportional scaling in resonance frequency or power at air cavity resonance. This
suggests that historic violin family design may have developed via a relatively sophisticated
nonlinear optimization process.

The explanation for how and why violin family sound hole evolution occurred is intimately
connected to the fact that the acoustic source amplitude, via temporal changes in air flow
through the sound hole, is directly proportional to sound hole perimeter length L near the air
resonance frequency, rather than area, as proved in §3. The reason for this dependence can
be seen by examining the normal velocity field exiting the sound hole for the violin and its
prominent European ancestors (figure 2, §2). Beginning with the Medieval fithele of the tenth
century, which contemporary imagery shows to have a simple circular sound hole [33,34], most
acoustic flux is found to be concentrated in a narrow region near the perimeter or outer edge
of the hole (figure 2a). This can be understood by noting that air flows through the hole as
an incompressible laminar fluid rather than propagating through as an acoustic ray, because
the length scale of compression, roughly a quarter wavelength, is large compared with the
hole dimension near air resonance frequency. The circular sound hole’s interior then becomes
increasingly inactive as radial distance from the edge increases (figure 2a), following fluid
dynamical principles for flow near wall edges [29], and consequently increasingly inefficient
for acoustic radiation. Our findings from the archaeological record (figure 1(i)–(vi)) indicate
that the ratio of inefficient to total sound-hole area was gradually reduced over the centuries
by increasing aspect ratio and geometric complexity, as exhibited by the introduction of semi-
circular sound holes [34–36] in twelfth–thirteenth century lyras (figure 2b), and then c-holes
[33,36] in thirteenth–sixteenth century Medieval and Renaissance rebecs (figure 2c–d). Through
this series of shape changes alone, sound hole perimeter length gradually grew, providing
greater conductance, greater air volume and mass flow rates over time and higher radiated
power for the same sound hole area at the air resonance frequency. The intertwined evolutionary
trends of decreasing acoustically inactive sound-hole area by increasing sound hole perimeter
length and conductance to increase radiated power efficiency continued with the addition
of taper, circular end nobs and central cusps in vihuela de arcos and viols [33,35,37] of the
fifteenth–seventeenth centuries (figure 2e), and the classical Cremonese f-holes [33–35,38,39] of
the sixteenth–eighteenth centuries (figure 2f ).

In this context, an instructive experimental verification of the sound hole conductance theory
used here is provided in figure 2g, for annular sound holes of varying thickness, where the
dominant mass flow is found to be concentrated near the outer perimeter, which has the most
impact on sound hole conductance, resonance frequency and radiated power. A related finding
is that the purely circular sound holes of classical guitars and the intricate sound hole rosettes
of lutes (figure 2h) and other instruments such as harpsichords, which have complex interior
structures within a circular perimeter, have negligibly different resonance frequencies (within a
quarter tone) and air resonance powers (within roughly 10%) for fixed outer perimeter length.
This supports assertions that the interior rosettes of these instrument families served primarily
decorative purposes [32,40–42] and hence did not evolve to maximize air resonance power
efficiency. The lute in fact became effectively extinct, perhaps partly due to its relatively low
radiated power. This occurred as the violin’s prominence rose, at least partially because its greater
radiated power enabled it to project sound more effectively as instrument ensembles and venue
sizes historically increased.

The gradual nature of sound hole shape changes from the tenth to the sixteenth century in
the violin’s ancestors to the violin is consistent with incremental mutation from generation to
generation of instruments. The steady growth of power efficiency across the centuries is consistent
with a selection process favouring instruments with higher power efficiency at air resonance.
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Figure 2. Sound hole shape evolution driven by maximization of efficient flow near outer perimeter, minimization of inactive
sound-hole area and consequent maximization of acoustic conductance. Normal air velocity field un(x, y, z) (equation (2.2))
through (a)–(f ) sound holes (i)–(vi) of figure 1 and (h) a lute rosette known as the ‘Warwick Frei’ [32] estimated for an infinite
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and P0, respectively. Velocities in (a)–(f ) and (h) are normalized by the average air-flow velocity through the circular sound
hole (a).
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5. Time-series analysis over the classical Cremonese period (sixteenth to
eighteenth centuries)

Over the classical Cremonese period, exact solutions for upper (∼ C2, equation (4.1)) and lower
(∼ C1, equation (4.2)) limiting cases on radiated acoustic power change over time (figure 3) due
purely to variations in the geometric parameter of f-hole length (figure 4c) are compared with
those determined from elastic volume flux estimation (∼ C1.7, equation (4.5)) (figure 3). As a
control, all other parameters than f-hole length are again held fixed over time, including the
forcing. Similar increasing trends are found for all cases (figure 3). So, elastic analysis, which
involves more parameters (§9, electronic supplementary material, §§3 and 4) all of which are held
fixed except for f-hole length in figure 3, still yields similar trends as exact solutions based on
purely geometric violin parameters.

We next estimate the change in acoustic radiated power over time (figure 4a) as a function of
the temporal variations of six parameters (figures 4c and 5) that have an at least or nearly first-
order effect on temporal changes in radiated acoustic power at air cavity resonance, by elastic
analysis for constant forcing over time. These parameters are measured from 470 extant classical
Cremonese violins. They are air cavity volume (figure 5a), which affects air cavity compression;
mean top and back plate thicknesses (figure 5b,c), which affect masses and stiffnesses; plate
thickness at the f-holes (figure 5e), which affects acoustic conductance [3]; mean air-cavity height
(figure 5d), which affects overall stiffnesses and f-hole length (figure 4c), which affects acoustic
conductance. The empirically observed modal motions that generate the effectively monopolar
acoustic radiation at air resonance [8,13], purely through changes in volume flux, are described
by physical analysis involving these measured parameters in §9. Increasing sound hole length,
for example, increases conductance and mass flow, but it also increases radiation damping. This
lowers the resonance maxima but increases peak bandwidth sufficiently to increase total power
integrated over the spectral peak (electronic supplementary material, §§2 and 4). By making the
back plate thicker and denser than the top plate, back plate motion and body volume change
are reduced. This leads to less coherent cancellation between mass outflow from the sound hole
and violin body contraction, and consequently higher radiated power at air resonance. This is
because at the air resonance frequency the top and back plates move towards each other, air
cavity volume decreases, forcing air volume out of the sound hole so that positive mass outflow
from the sound hole is then partially cancelled by negative mass outflow from the violin body
contraction, in the observed omnidirectional or monopolar radiation (electronic supplementary
material, §4). Keeping the top plate lighter, on the other hand, enables it to be more responsive to
direct forcing at the bridge and drive more air mass through the sound hole. For fixed air cavity
volume, increasing mean air cavity height increases stiffness. Reducing top plate thickness at the
f-holes reduces air flow resistance and so increases conductance.

By comparison of figures 3 and 4a, we find that estimated power changes due to the temporal
variations of all six parameters (figure 4a) primarily follow the estimated power variations due
to the isolated temporal effects of f-hole length variation alone (figure 3). This can also be seen
by noting that the total change in radiated power over the Cremonese period estimated from
elastic volume flux analysis with all six parameters is roughly 60 ± 10% (figure 4a), and that
the conductance contribution via C1.7 ∝ L1.7

F from f-hole length changes alone of roughly 30%
(electronic supplementary material, equation (S18)) leads to a similar 58 ± 5% power change over
the Cremonese period (figure 3), with a very similar trend. We find that these results are consistent
with a selection process favouring instruments with higher acoustic power at air resonance during
the classical Cremonese period. The increases in estimated power and measured f-hole length
over the classical Cremonese period are found to be relatively steady and gradual beginning
from the Nicolo Amati period until the Guarneri period. During the Guarneri period more
dramatic increases in both occurred. By examining individual contributions of the six parameters
(figure 6a), it is again found that temporal changes in estimated acoustic power are dominated by
temporal changes in f-hole length. The next largest contribution to estimated power comes from
clear increases in back plate thickness during the Stradivari and Guarneri periods, which is still
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Figure 3. Time series of change in total radiated acoustic power as a function of temporal changes of the purely geometric
parameter of f-hole length during the Cremonese period. The estimated dependence via elastic volume flux analysis
(Wair-elastic ∼ C1.7, equation (4.5), solid coloured lines) is roughly the average of the upper (Wwall ∼ C2, equation (4.1), dashed
black line) and lower (Wair-rigid ∼ C, equation (4.2), solid black line) limiting cases. Coloured lines and shaded patches,
respectively, represent mean trends and standard deviations of Wair-elastic for different workshops: Amati (blue), Stradivari
(red), Guarneri (green), Amati–Stradivari overlap (blue-red) and Stradivari–Guarneri overlap (red-green). Percentage change
is measured from the 1560 Amati workshop instrument. The conductance of the two interacting violin f-holes is determined
from equation (2.3).

roughly a factor of two less than the contribution from f-hole length increases (figure 6a). These
observations and trends have clear design implications.

Mean air resonance frequencies estimated from elastic analysis match well, to within an
eighth of a semitone corresponding to a roughly 1% RMSE, with mean measured air resonance
frequencies of classical Cremonese violins for each family workshop (figure 4b). Rigid instrument
analysis leads to an air resonance frequency temporal trend similar to elastic analysis (figure 4b),
suggesting that the elastic resonance frequency trend is dominated by variations in sound hole
length and instrument volume. This is consistent with the finding that the effects of all other
parameters are small on the overall resonance frequency temporal trend (figure 6b), even though
they play an important role in fine tuning the absolute resonance frequency. Rigid instrument
analysis, however, results in offsets of roughly a semitone between estimated and measured
Cremonese air resonance frequencies (figure 4b), and so may not be sufficient for some fine-
tuned musical applications. These observations and trends also have clear design implications.
Increases in f-hole length (figure 4c) were apparently tempered by a gradual increasing trend in
cavity volume (figure 5a) that effectively constrained the air resonance frequency (equation (4.4))
to vary within a semitone of traditional pitch conventions (figures 4b and 6b), and within a range
not exceeding the resonance peak’s half power bandwidth, roughly its resolvable range.

6. Sound hole shape and air resonance power evolution rates and mechanisms
A theoretical approach for determining whether design development is consistent with evolution
via accidental replication fluctuations from craftsmanship limitations and subsequent selection
is developed and applied. Concepts and equations similar to those developed in biology for
the generational change in gene frequency solely due to random replication noise and natural
selection [46,47] are used. The formulation, however, includes thresholds for detecting changes
in an evolving trait that are inconsistent with those expected solely from replication noise due to
random craftsmanship fluctuations, and so differs from biological formulations.

A key assumption is that the instrument makers select instruments for replication from a
current pool within their workshop, which would typically be less or much less than the number
of surviving instruments in use at the time. This is consistent with historic evidence [38,39,48] and
the smooth nature of the time series in figure 4c.
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(equation (4.3)). Two northern Italian pitch standards,Mezzo Punto and Tuono Corista (electronic supplementarymaterial, §10),
from the late sixteenth to late seventeenth centuries and common seventeenth to early eighteenth centuries French baroque
pitches (black dashed lines) are also shown in (b). Percentage change in radiated power is measured from the 1560 Amati
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Figure 5. Temporal variations in (a) air-cavity volume V, (b) back plate thickness hback, (c) top plate thickness htop (d) plate
thickness near f-holes hsh and (e) mean air cavity height ha measured from 110 classical Cremonese violins. Black lines in (a,e)
represent 20-instrument running averages, and in (b)–(d) represent quadratic regression fits of available thickness data. Data
sources are provided in the electronic supplementary material, §5.

The expected evolution rate threshold ECraftFluct is defined as the difference from the mean
of the expected maximum value of the evolving random trait variable, taken from the expected
selection pool of population N containing the most recent generations, divided by the mean time
between each generation, assuming randomness and mutation solely due to random replication
noise. So, the evolution rate threshold, ECraftFluct, for a given trait ι, such as f-hole length,
below which trait evolution rates are consistent with accidental trait replication fluctuations from
craftsmanship limitations is defined as

ECraftFluct = 〈maxN(ι)〉 − 〈ι〉
Tg

. (6.1)

Here maxN(ι) represents the maximum value of the trait ι taken from a selection pool of
population N containing the most recent generations, 〈ι〉 is the expected value of ι and Tg is
the mean generational period. Equation (6.1) reduces to that for expected generational change
in gene frequency due to replication error and natural selection obtained by Price [46] when
only the sample with the largest trait value is selected for replication. Another evolution
rate threshold, EDesignPlan, above which trait evolution rates are likely to be inconsistent with
accidental replication fluctuations from craftsmanship limitations is defined as

EDesignPlan =
√

〈ι2〉 − 〈ι〉2

Tg
. (6.2)
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Figure 6. Approximate components of temporal trends in (a) radiated acoustic power Wair-elastic (equation (4.5)) and (b) air
resonance frequency f air-elastic (equation (4.4)) over time due to f-hole length LF (blue), air cavity volume V (red), top plate
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The conductance of the two interacting violin f-holes is determined from equation (2.3). Input mean time series data are from
figures 4c and 5.

This corresponds to an increase of 1 s.d. in the value of the trait ι over consecutive generations.
Two evolving design traits of the Cremonese violins are examined here, f-hole length and radiated
acoustic power at air resonance. Their statistics are described in the electronic supplementary
material, §7.

For measured rates below the theoretical threshold ECraftFluct (equation (6.1)), mutations arise
well within the range of accidental replication fluctuations from craftsmanship limitations while
for those above the threshold EDesignPlan (equation (6.2)), mutations probably arise from planned
design changes. All evolution rates for linear sound hole dimension (figure 7a) and air resonance
power (figure 7b) are found to fall at least an order of magnitude below an expected evolution
rate threshold set for a selection pool population of at least N = 2 instruments, the minimum
whole number population enabling selection, since N = 1 leads to no selection and trendless
random walk. All measured evolution rates are then consistent with mutations arising from
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Figure 7. Measured evolution rates and thresholds distinguishing mutation origins as being consistent or inconsistent with
accidental replication fluctuations from craftsmanship limitations.Mean evolution rates for (a) linear sound hole dimension and
(b) estimated radiated acoustic power at air resonance. Below N = 2, corresponding to ECraftFluct (equation (6.1), lower dashed
grey line), mutations likely arise within the range of accidental replication fluctuations due to craftsmanship limitations. Above
N ≈ 4, corresponding to EDesignPlan (equation (6.2), upper dashed grey line), mutations probably arise from planned design
changes. All rates are based on a generational period of 0.1 year (electronic supplementary material, §5).

replication noise due to random craftsmanship fluctuations before the nineteenth century. All
measured evolution rates require very small and easy to attain minimum generational selection
pool populations of between 1 and 1.12 instruments. Evolution rates exceeding the replication
noise standard deviation per generational period, EDesignPlan (equation (6.2)), which corresponds
to N = 4 for the given noise distribution, are more likely to be due to planned design alterations,
but none above even the N = 2 threshold were found up to and including the Cremonese
period. For the late Guarneri period, measured f-hole length and estimated power evolution rates
dramatically increase (figure 7). This is consistent with a significant increase in preference for
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Savart Chanot

Figure 8. Sound hole shapes and violins made by Savart and Chanot in the early 1800s [49–51]. While the Savart and Chanot
instruments, which had notable design differences from classical violins, were unsuccessful, they were made for the violin
repertoire andwere consistently referred to as violins by their creators and in subsequent literature [49–51]. In particular, Savart’s
instrument is usually referred to as the ‘trapezoidal’ violin and Chanot’s instrument is usually referred to as the ‘guitar-shaped’
violin [6,50,51].

instruments with longer f-holes and higher power or a significant increase in the mean selection
pool population available compared with past generations. If lower evolution rates are associated
with more stable evolutionary niches characterized by low environmental pressure for change,
then the Stradivari period would be most stable and the Guarneri the least based on figure 7,
which is consistent with historical evidence [38,39].

In unsuccessful evolutionary offshoots, relatively drastic and temporally impulsive changes
to sound hole shape (figure 8) and violin design were made by Savart and Chanot in the early
1800s by well-documented preconceptions [49–51]. Their respective evolution rates in sound hole
perimeter length and power are so large that they are inconsistent with random craftsmanship
fluctuations, leaving planned design change as the likely possibility (figure 7). The air resonance
power efficiencies and conductances of the Savart and Chanot sound holes are significantly
lower than those of the classic violin f-holes: Savart and Chanot sound holes (figure 8) have
perimeter lengths that are lower by roughly 34% and 30% (figure 7a), and air resonance powers
that are lower by roughly 23% and 17% (figure 7b), than those of classical Cremonese violin
f-holes (figure 1(vi)), and are a regression to sound hole shapes of the fourteenth–fifteenth
centuries (figure 1a) in terms of air resonance power. These results are consistent with the
classical Cremonese violin makers taking the conservative approach of letting inevitable random
craftsmanship fluctuations, or small planned changes of magnitude consistent with those of
such random fluctuations, be the source of mutations that led to evolution by subsequent
selection and replication. This approach avoids the potential waste of implementing flawed
preconceptions that exceed those of inevitable craftsmanship fluctuations. Savart and Chanot
were scientists rather than professional violin makers. They apparently were freer to take the far
riskier approach of gambling with the implementation of drastically different sound hole shapes
based on preconceptions. Such gambling could produce much greater changes in efficiency in a
short time. Unfortunately, the conductance theory here shows them to have been less efficient
than the f-hole in terms of power efficiency at air resonance.

7. Experimental verification of the conductance theory
By experimentally stimulating an approximately rigid vessel with violin f-holes with an external
sound source and an internal receiver, the conductance theory of §§2 and 3 is found to provide
an excellent match (RMSE ≈ 1%) with measured values of Helmholtz resonance frequency
(figure 9). A similar match between conductance theory results and measured Helmholtz
resonance frequencies is found for a rigid vessel containing annular sound holes of varying
thickness, as shown in figure 2g. Details of the measurements are provided in [52].
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A circular hole is found to provide a poor approximation to a sound hole of the same area but
with a significantly different perimeter length, as shown in figure 10, where conductance is found
to be linearly proportional to outer perimeter length as explained in §4 and proved in §3. A sound-
hole area-based approach, that the conductance of a sound hole is the same as that of a circular
hole with same area, then results in incorrect values of Helmholtz resonance frequencies as shown
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in figure 10 for a variety of sound hole shapes spanning many different musical instruments,
based on theory and direct experimental measurements, including the violin f-hole. For example,
instruments whose sound holes have interior rosettes, such as lutes, theorbos and ouds, have less
sound-hole area than the circle for the same outer perimeter length, which leads to significant
errors in the sound-hole area approach. This is consistent with Rayleigh’s supposition that for
fixed area, the circle is the shape with the lowest conductance [3].

A circular hole is also quantitatively found to be a poor approximation to the f-hole by elastic
instrument analysis and conductance theory. If sound hole area is fixed, then the Helmholtz
resonance frequencies of Cremonese violins with circular holes are offset by roughly 50 Hz or
three semitones from those of violins with f-holes (electronic supplementary material, figure S1).
If sound hole perimeter length is fixed, then the resonance frequencies are offset by roughly
100 Hz or 6 semitones from those of violins with f-holes (electronic supplementary material,
figure S1). Cremer [9] deduced that an ellipse of the same area is a better approximation to an
f-hole than a circle of the same area but did not quantify the accuracy of this approximation in
conductance, radiated power or resonance frequency due to the lack of a method for computing
the conductance of an actual f-hole.

8. Experimental verification of differences between rigid and elastic Helmholtz
resonance for the violin

By experimentally stimulating a violin with an external sound source and an internal receiver,
the measured Helmholtz resonance frequency of a violin with rigidly clamped top and back
plates is found to provide an excellent match (figure 11), within roughly 1% after repeated
measurements, to the rigid instrument Helmholtz resonance frequency of equation (4.3) with
f-hole conductance theory (§§2 and 3). The plates are clamped using five c-clamps attached
approximately uniformly across the violin plates. When the plate clamps are removed, air
resonance frequency is found to be reduced by roughly 6 ± 1% (figure 11) from the clamped case
after repeated measurements, consistent with the reduction expected from elastic volume flux
analysis (§9) with f-hole conductance theory (§§2 and 3) (figure 4b). This experimentally shows
that the elastic effects of the violin body lead to a roughly 6% reduction in Helmholtz resonance
frequency from that of a corresponding rigid violin body.

9. Harmonic oscillation of violin elastic structure coupled with compressible air
and f-hole air flow at air resonance

At air resonance measurements have shown that the violin radiates sound as an omni-directional
or monopolar source [1], as has also been noted in [53]. Sound radiation at air resonance can
then be determined from the total volume flux due to air volume flowing through the f-holes and
violin body volume change. For the guitar, the lowest mode of vibration, that at air resonance, has
been modelled [21,54] by coupling the elastic deformation of the guitar with fluid compression
within the air cavity using a fundamental harmonic oscillator approach. This work followed
earlier suggestions of considering a similar harmonic oscillator approach for the violin [20]. It
was found that the guitar’s elastic body led to a significant lowering of the air cavity resonance
frequency from that of a corresponding rigid instrument [55] given by the classical theory of
a Helmholtz resonator [3–5]. Here, a similar reduction in air cavity resonance frequency is
experimentally found by investigating a rigidly clamped versus a free, unclamped violin and
theoretically confirmed as shown in §8. This similarity between guitar and violin results suggests
rigid analysis is inadequate and elastic analysis, as was applied to the guitar [21,54], is necessary
to estimate the air resonance frequency of a violin to within a semitone.

At and in the vicinity of the air resonance frequency, it has been experimentally shown that
roughly normal displacements of the top and back plate of the violin are primarily responsible
for radiation of sound [8,13]. This is consistent with measured monopole radiation at the air
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Figure 11. The measured Helmholtz resonance frequency of a violin with rigidly clamped top and back plates (solid red curve)
is an excellent match (within roughly 1%) to the rigid instrument analysis (equation (4.3), dashed red line). When the plate
clamps are removed, the measured resonance frequency (solid black curve) reduces by roughly 6% or a semitone, consistent
with the reduction expected from elastic volume flux analysis for the violin (dashed black line). The two spectra shown are
normalized by their respective peak amplitudes. The violin is externally stimulated with white noise. The violin used here has
LF = 70.5 mm, V = 1580 cm3, hsh = 2.7 mm, ha = 35.9 mm, htop = 2.5 mm and hback = 3 mm. Other physical parameters
are given in table 1.

resonance frequency since monopole radiation results from pure volume change. The spectral
peak at the air resonance frequency is a result of harmonic oscillation involving masses,
stiffnesses and damping components from the violin. Measurements across extant classical
Cremonese violins [43–45] show the air resonance frequency to be remarkably stable, varying
within only two-thirds of a semitone (≈ 4%) with a standard deviation of only one-third of a
semitone (≈ 2%). This suggests that a stable physical mechanism is at work at air resonance.
The harmonically oscillating structural elements of the violin that lead to sound radiation at
air resonance have stiffnesses that have been identified in previous studies [56] (electronic
supplementary material, §6). In particular, at the air resonance frequency, the ribs and sound
post correspond to nulls in the displacement field of the violin top and back plates [8,57],
and so these regions yield negligible contributions to both volume change and the resulting
monopole radiation. The ribs and sound post, however, add stiffness to the violin top and
back plates, which affects the displaced volume. The stiffness of an actual violin top plate,
K̄top, of thickness h̄top ≈ 3 mm with sound holes, curvature and structural support from the bass
bar, sound post and ribs has been experimentally [56] determined through spectral analysis
(electronic supplementary material, §6). The stiffness of an actual violin back plate, K̄back, of
thickness h̄back ≈ 3.5 mm with curvature and structural support from the sound post and ribs
has been experimentally [56] determined through spectral analysis (electronic supplementary
material, §6). Elastic coupling of the air cavity, with compressibility 1/ρairc2

air, to the violin
structure plays an important role at air resonance, as does the combined conductance of the
sound holes, C, which regulates volume changes due to air volume flow, vair, through the sound
holes. When the system is subjected to top plate forcing F at the bridge, the resulting harmonic
oscillation can be described using Newton’s second law. The total structural volume change
resulting from this oscillation can be determined via multiplication of equivalent displaced
areas (electronic supplementary material, §6) Stop and Sback of the top and back plates at air
resonance, which include the combined effects of the curved violin shape and nonlinear modal
displacement field, with associated time-dependent normal displacements xtop(t) and xback(t)
of the top and back plates (electronic supplementary material, §6). The ratios of equivalent
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displaced area to total plate surface area for actual violin top and back plates at air resonance
have been experimentally determined (electronic supplementary material, §6) from holographic
measurements [57].

The air-resonance dynamics of i = 1, 2, 3, . . . N Cremonese violins beginning from Amati
1560 to Guarneri 1745, where N = 485 are analysed. Known design parameters Ci (electronic
supplementary material, §9), Vi, htop

i , hback
i and ha

i from direct measurements or interpolation

appear in figures 4c and 5. Small variations in top plate thickness htop
i about h̄top for the ith violin

lead to top plate stiffness Ktop
i = K̄top + εtop[htop

i − h̄top] near air resonance where εtop is the first-
order Taylor series coefficient. Similarly, back plate stiffness Kback

i = K̄back + εback[hback
i − h̄back]

near air resonance depends on plate thickness hback
i , where εback is the first-order Taylor series

coefficient for small variations near h̄back. The equivalent displaced top plate and back plate
areas (electronic supplementary material, §6) that contribute to acoustic radiation via net volume
change near air resonance are given by Stop

i = ξ topAtop
i and Sback

i = ξbackAback
i , where Atop

i = Vi/ha
i

and Aback
i = Vi/ha

i are the total top and back plate areas. The displaced masses of the top and

back plates near air resonance are then Mtop
i = ρtophtop

i Stop
i and Mback

i = ρbackhback
i Sback

i . Damping
factors at air resonance

Rair
i ≈ ρair

4πcair
(ωair

i )2, Rtop
i ≈ ρair(Stop

i )2

4πcair
(ωair

i )2,

Rback
i ≈ ρair(Sback

i )2

4πcair
(ωair

i )2

and Rtop-back
i ≈ ρair(Stop

i )2

4πcair
(ωair

i )2, Rback-top
i ≈ ρair(Sback

i )2

4πcair
(ωair

i )2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(9.1)

are determined such that the energy dissipated by the damping forces acting on the plates and
air piston is equal to that acoustically radiated from plate oscillations and air flow through the
sound holes (electronic supplementary material, §3), where constants ρtop and ρback are top and
back plate densities, respectively. Viscous air flow damping at the sound hole is at least one
order of magnitude smaller than radiation damping [10] at air resonance and is negligible. In the
guitar model [21,54], damping coefficients were empirically determined by matching modelled
and measured sound spectra and/or plate mobility. The physical approach for determining the
damping coefficients used here follows Lamb [4], through a radiation damping mechanism. The
Q-factors obtained here for the air resonance peaks and the corresponding half power bandwidth
are within roughly 20% of those measured for violins [13,58], indicating that radiation damping
is the dominant source of damping at the air resonance frequency.

Narrowband [31,59–61] forcing F(t) ≈ F0(t) e−jωair
i t that is spectrally constant in the vicinity

of the air resonance peak ωair
i is assumed, where F0(t) is a slowly varying temporal envelope

that is the same for each of the i = 1, 2, 3, . . . N violins. This allows narrowband approximations
[31,59–61] for the displacements xtop

i (t) ≈ χ
top
i (t) e−jωair

i t , xback
i (t) ≈ χback

i (t) e−jωair
i t and vair

i (t) ≈
γ air

i (t) e−jωair
i t, where χ

top
i (t), χback

i (t) and γ air
i (t) are slowly varying temporal envelopes that are

effectively constant at the center of the time window for the ith violin. The harmonic oscillating
system at air resonance for the ith violin can then be described by

⎛
⎜⎜⎝

B11 B12 B13

B21 B22 B23

B31 B32 B33

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎝

xtop
i (t)

xback
i (t)

vair
i (t)

⎞
⎟⎟⎟⎠ =

⎛
⎜⎝F(t)

0
0

⎞
⎟⎠ , (9.2)
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where

B11 = Mtop
i

d2

dt2 + Rtop
i

d
dt

+
[

Ktop
i + ρairc2

air
Vi

(Stop
i )2

]
,

B12 = Rback-top
i

d
dt

+ ρairc2
air

Vi
Stop

i Sback
i ,

B13 = ρairc2
air

Vi
Stop

i ,

B21 = Rtop-back
i

d
dt

+ ρairc2
air

Vi
Sback

i Stop
i ,

B22 = Mback
i

d2

dt2 + Rback
i

d
dt

+
[
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i + ρairc2

air
Vi
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i )2

]
,

B23 = ρairc2
air
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i ,
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Stop

i ,
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i

and B33 = ρair
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d2

dt2 + Rair
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d
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.
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(9.3)

Estimates of the parameters K̄top, K̄back, ξ top, ξback, εtop and εback at the air resonance frequency
are obtained by comparing measured air resonance frequency data of Cremonese violins with
those obtained from electronic supplementary material, equation (S9) via the method of least
squares. Twenty-six air resonance frequency measurements previously obtained in the literature
corresponding to 26 extant Cremonese violins [43–45] are used. Parameter ranges in the least-
squares estimate are constrained to be near independently measured values. Specifically, the
parameters K̄top, K̄back, ξ top and ξback are all constrained to have small first-order variations,
i.e. no more than roughly 33%, from empirical values determined from direct measurements by
Jansson and colleagues [56,57] of an actual violin top plate with f-holes, curvature, bass bar and
effectively zero displacement at the location of the sound post and ribs (electronic supplementary
material, §6) and a violin back plate with curvature, and effectively zero displacement at the
location of sound post and ribs (electronic supplementary material, §6). The sum of the squared
differences between measured and estimated air resonance frequencies

Ψ =
N∑

i=1

s[i]
∣∣∣ωair-data

i − ω̂air
i (Ci, Vi, htop

i , hback
i , ha

i |K̄top, K̄back, ξ top, ξback, εtop, εback)
∣∣∣2 (9.4)

is minimized with respect to parameters K̄top, K̄back, ξ top, ξback, εtop and εback resulting in the
least-squares estimates

[ ˆ̄K
top

, ˆ̄K
back

, ξ̂ top, ξ̂back, ε̂top, ε̂back] = [arg minΨ (K̄top, K̄back, ξ top, ξback, εtop, εback)], (9.5)

where i = 1, 2, . . . N and s[i] = 1 for the ith violin if air resonance frequency data ωair-data
i are

available, otherwise s[i] = 0. These least-squares estimates are also the maximum-likelihood
estimates because the measured air resonance frequencies are uncorrelated and have roughly the
same variance across time, and so have minimum variance for large samples [61,62].

Estimates for ˆ̄K
top

, ˆ̄K
back

, ξ̂ top, ξ̂back, ε̂top and ε̂back are provided in table 1. These least-squares
estimates are used to determine the air resonance frequency ωair

i via electronic supplementary

material, equation (S9) and xtop
i , xback

i and vair
i via equation (9.2) in the vicinity of the air resonance

peak given the violin design parameters of figures 4c and 5 for the ith violin. The total radiated
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Table 1. Parameters estimated in elastic volume flux analysis.

parameter value

ˆ̄K
top
for h̄top = 3 mm 6.92 × 104 N m−1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ˆ̄K
back

for h̄back = 3.5 mm 2.75 × 105 N m−1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ε̂ top for top plate thickness variation near h̄top 1.10 × 107 N m−2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ε̂back for back plate thickness variation near h̄back 1.20 × 108 N m−2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ξ̂ top 0.15
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ξ̂ back 0.22
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

power at air-resonance is then determined from the resulting xtop
i , xback

i and vair
i via equation (9.8)

for the ith violin. This leads to the time series of air resonance frequency and power shown in
figure 4a–b. Empirically obtained dependencies of the air resonance frequency and power on
violin design parameters over the entire Cremonese period are given in equations (4.4) and (4.5),
respectively. Time series of estimated air-resonance frequency and half power bandwidth about
the resonant peak, determined from equation (9.7) (electronic supplementary material, figure S2),
characterize the resonance peaks estimated for each violin in the time series [63]. Wood densities
are taken to be ρtop = 400 kg m−3, ρback = 600 kg m−3 [8] and air densities and sound speeds are
taken to be cair = 340 m s−1 and ρair = 1 kg m−3 [64].

The second and third eigenvalues, where ωMode-1
i < ωMode-2

i < ωMode-3
i and ωMode-1

i = ωair
i of

the equation (9.2) system are also estimated from electronic supplementary material, equation
S9 for all i = 1, 2, 3 . . . N violins with the parameters of table 1. The RMSE between the means
of estimated first eigenvalues and those measured [43–45] from classical Cremonese violins for
each family workshop is roughly 1%. Over the entire Cremonese period, the second and third
eigenvalue estimates are (i) within roughly 15% of those measured from a modern violin in
[56,57], and (ii) consistent with the range found for extant Cremonese violins [7–9,13,20,43,56,57].
Air resonance frequency is found to be relatively insensitive to typical changes in plate stiffness
and equivalent displaced areas. For variations in plate stiffnesses of roughly 33% and equivalent
displaced areas of roughly 33%, the air resonance frequency varies only by roughly 2%. Mode 1,
the air resonance frequency mode, is dominated by resonant air flow through the sound holes,
where top and back plates move in opposite directions, and the back plate moves in the same
direction as air flow through the sound hole. Mode 2 is mainly influenced by the top plate [13,65].
Mode 3 is mainly influenced by the back plate [13,65]. These basic coupled oscillator results are
consistent with the dominant ‘A0,’ ‘T1’ and ‘C3’ motions that Jansson [8] and Moral & Jansson [13]
empirically found to contribute significantly to sound radiation near air cavity resonance (figs 2b,
4 and 6 of [13]). Other modes in this frequency range are due to torsional motions that do not
lead to significant volume flux nor consequent monopole radiation. Jansson et al. [13] empirically
found these torsional modes lead to only insignificant acoustic radiation. Fletcher & Rossing [66]
provides a translation of nomenclatures used by various authors for violin modes.

The effect of the ‘island’ area between the sound holes is included in the least-squares stiffness
estimates and in those from the empirical measurements of Jansson and colleagues [56,57] as
shown in the electronic supplementary material, §6. While dynamical effects associated with the
‘island’ area [9,20,67] between the f-holes have been discussed in the context of violin performance
in the 2–3 kHz frequency range, i.e. near the ‘bridge hill’ [68,69], empirical measurements [8]
and numerical simulations [67] of violins with and without f-holes, and consequently with and
without the ‘island,’ show that the effects of the ‘island’ at air resonance on radiated power and
the air resonance frequency are negligible, as shown in the electronic supplementary material,
§6. All of these findings are consistent with the fact that at the air resonance frequency only total
volume change needs to be accurately resolved. An investigation of the evolution of violin power
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efficiency at frequencies much higher than the air resonance frequency is beyond the scope of the
air resonance analysis presented.

It is theoretically confirmed that at air resonance the combination of elastic displacements
of the violin plates and air flow through the sound holes described in equation (9.2) leads to
predominantly monopolar radiation in the electronic supplementary material, §4. The spectrum
of the radiated acoustic pressure field from a monopole source [2–4] at frequency f is

P̃(r, f ) = (−j2π f )2m̃(f )
4πr

ejkr, (9.6)

where m(t) ⇔ m̃(f ) are Fourier transform pairs and ṁ(t) is mass flow rate. The corresponding
radiated power spectral density [10] from the monopole at frequency f is

S( f ) = 1
T

(2π f )4|m̃(f )|2
4πρaircair

= 1
T

(2π f )4|ṽ(f )|2
4πcair

, (9.7)

where T is the averaging time. The total power in the half power band �f about the air resonance
spectral peak at resonance frequency f air is

Wair =
∫ f air+�f/2

f air−�f/2
S(f ) df . (9.8)

For the violin, which radiates as a monopole at air resonance (equation (9.6)), the total radiated
acoustic power in half-power bandwidth at air resonance is then given by equation (9.8), with
ṽ( f ) = ṽair( f ) + ṽstructure( f ) and ṽstructure( f ) = Stopx̃top( f ) + Sbackx̃back( f ), where vair(t) ⇔ ṽair( f ),
xtop(t) ⇔ x̃top( f ), xback(t) ⇔ x̃back( f ), and P(r, t) ⇔ P̃(r, f ) are Fourier transform pairs [31], and
vair(t), xtop(t) and xback(t) are estimated from equation (9.2), f air = f air-elastic from equation (4.4)
and �f = �f air-elastic from equation (9.7). This is consistent with the experimental findings
of Meyer [1] and the monopole radiation assumption in a number of musical acoustics
applications [21,66,67,70,71]. Well below air resonance, it is theoretically confirmed in electronic
supplementary material, §4, that the volume change caused by violin plate displacements
is approximately balanced by air flow out of the sound holes leading to approximately
dipole radiation

P̃(r, f ) ≈ jρair(2π f )2
(

kh0

2

)
[ṽair( f ) − ṽstructure( f )] cos θ

ejkr

4πr
, (9.9)

where h0 is the distance between the violin centre and top plate, corresponding to the dipole
length between volume change sources, and θ is the angle between the receiver and dipole
axis along the surface normal pointing outward from the top plate. This is consistent with the
experimental findings and discussion of Weinreich [53].

10. Conclusion
By theoretical proof, experimental measurements and numerical computation, air flow at the
perimeter rather than the broader sound-hole area is found to dominate the acoustic conductance
of sound holes of arbitrary shape, making conductance proportional to perimeter length. As a
result, it is found that the ratio of inefficient, acoustically inactive to total sound-hole area was
decimated and radiated acoustic power efficiency from air-cavity resonance roughly doubled
as sound-hole geometry of the violin’s ancestors slowly evolved over nearly a millennium
from simple circles of the tenth century to the complex f-hole of the sixteenth–eighteenth
centuries. It is also found that f-hole length then followed an increasing trend during the
classical Cremonese period (sixteenth–eighteenth centuries) in the renowned workshops of
Amati, Stradivari and Guarneri, apparently favouring instruments with correspondingly higher
air-resonance power. Temporal power trends due solely to variations in sound hole geometry over
roughly a millennium, determined from exact analytic solutions for equivalent rigid violins and
infinite rigid sound hole bearing plates, are found to be similar to those determined from elastic

 on October 30, 2015http://rspa.royalsocietypublishing.org/Downloaded from 

http://rspa.royalsocietypublishing.org/


24

rspa.royalsocietypublishing.org
Proc.R.Soc.A471:20140905

...................................................

volume flux analysis. Resonance frequency and power changes over the classical Cremonese
period were then also estimated by elastic volume flux analysis including the variations of
other violin parameters as well as f-hole length. This was done by constructing time series of
f-hole length, air cavity volume, top and back plate thickness, plate thickness near f-holes and
mean air cavity height from measurements of 470 classical Cremonese violins. The resulting
temporal trend in radiated power is dominated by the effect of variations in f-hole length
alone. This trend is similar to that obtained by exact analytic solutions for equivalent rigid
violins and infinite rigid f-hole bearing plates, where only f-hole length is varied. The resulting
resonance frequency estimates from elastic analysis match measured resonance frequencies from
extant classical Cremonese violins to within a quarter of a semitone, roughly a Pythagorean
comma. Rigid analysis, which only depends on f-hole length and cavity volume, leads to the
same resonance frequency trend but with an offset of roughly a semitone. This indicates that
elastic analysis is necessary for fine-tuned musical pitch estimates. Evolution rate analysis was
performed on the time series of measured f-hole length and estimated air resonance power.
The corresponding evolution rates are found to be consistent with (a) instrument-to-instrument
mutations arising within the range of accidental replication fluctuations from craftsmanship
limitations and subsequent selection favouring instruments with higher air-resonance power,
rather than (b) drastic preconceived design changes from instrument-to-instrument that went
beyond errors expected from craftsmanship limitations. This suggests evolutionary mechanisms
by either (i) a conservative approach where planned mutations avoided changes of a magnitude
that exceeded those inevitable from normal craftsmanship error, or (ii) purely random mutations
from craftsmanship limitations and subsequent selection. The former is consistent with a practical
and economical innovation strategy to minimize waste.
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