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Poroelasticity of Cartilage at the Nanoscale
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ABSTRACT Atomic-force-microscopy-based oscillatory loading was used in conjunction with finite element modeling to quan-
tify and predict the frequency-dependent mechanical properties of the superficial zone of young bovine articular cartilage at
deformation amplitudes, d, of ~15 nm; i.e., at macromolecular length scales. Using a spherical probe tip (R ~ 12.5 mm), themagni-
tude of the dynamic complex indentation modulus, jE*j, and phase angle, 4, between the force and tip displacement sinusoids,
were measured in the frequency range f ~ 0.2–130 Hz at an offset indentation depth of d0 ~ 3 mm. The experimentally measured
jE*j and4 correspondedwell with that predicted by a fibril-reinforced poroelasticmodel over a three-decade frequency range. The
peak frequency of phaseangle, fpeak, was observed to scale linearly with the inverse square of the contact distance between probe
tip and cartilage, 1/d 2, as predicted by linear poroelasticity theory. The dynamic mechanical properties were observed to be
independent of the deformation amplitude in the range d¼7–50nm.Hence, these results suggest that poroelasticitywas thedomi-
nant mechanism underlying the frequency-dependent mechanical behavior observed at these nanoscale deformations. These
findings enable ongoing investigations of the nanoscale progression of matrix pathology in tissue-level disease.
INTRODUCTION
Poroelasticity of cartilage, including fluid pressurization
and the viscous drag of the flow through the porous extracel-
lular matrix (ECM), plays an important role in load-bearing
(1), energy dissipation and self-stiffening (i.e., increase in
the dynamic stiffness of cartilage with increasing compres-
sion frequency) (2,3), solute and fluid transport (4), lubrica-
tion (5,6) and mechanotransduction (7). Poroelasticity and
intrinsic viscoelasticity (8) of the ECM macromolecules
are the two main mechanisms of energy dissipation and
time-dependent behavior in cartilage. Poroelastic energy
dissipation originates from fluid-solid frictional interactions
due to fluid pressurization and viscous drag through the
porous ECM (9,10). Intrinsic viscoelastic dissipation is
related to the relaxation and reconfiguration of ECMmacro-
molecules including the collagen fibrillar network, nega-
tively charged aggrecan aggregates, and associated matrix
molecules (8,11–13). Instrumented and atomic-force-micro-
scopy (AFM)-based indentation studies of intact cartilage
tissue and the chondrocyte-cell-associated matrix have
begun to elucidate the relation between matrix molecular
structure and mechanical behavior (14–22). These studies
have primarily focused on the elasticity of the tissue as
quantified using single-phase elastic contact models such
as the Hertzian (23) and Oliver-Pharr approaches (24).
Consequently, although the poroviscoelastic behavior of
cartilage has been extensively studied at the micro-
(25,26) and macroscale (8,27), time-dependent behavior
and energy dissipation mechanisms of the cartilage ECM
at the nanoscale are not well understood (21,22).
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Cartilage tissue-level biomechanical properties are deter-
mined by the tissue’s fibrillar collagen network and the
negatively charged glycosaminoglycan (GAG) side chains
of aggrecan. To obtain insights into the nanoscale contribu-
tion of such macromolecules to the time-dependent mechan-
ical behavior of the ECM, AFM-based force relaxation and
dynamic oscillatory indentation were recently performed on
young bovine cartilage (22) and tissue engineered cell-
associated matrix (21). Using displacement amplitudes of
~2–50 nm in conjunction with scaling arguments, it was
suggested that poroelasticity is the dominant mechanism
under these loading conditions (21,22). In our previous
work (22), a Hertzian model was used to describe the
time-dependent nanomechanics of native (untreated) and
proteoglycan-depleted cartilage disks, and to quantify such
properties as the indentation modulus, the force-relaxation
time constant, and the magnitude and phase of the complex
dynamic modulus. jE�j was observed to increase with fre-
quency from 0.225 0.02 MPa at 1 Hz to 0.775 0.10 MPa
at 316 Hz, and this increase was accompanied by an increase
in phase angle d. The quantification of the nanoscale
dynamic mechanical properties of cartilage opens up great
opportunities for early diagnosis of tissue alteration and
disease (16) and for investigation of the role of other impor-
tant proteins in ECM by comparing data from wild-type
and knockout mice models (28), which are challenging to
quantify by traditional methods due to their small size and
irregular shape.

In this study, we expanded significantly upon our pre-
vious work, first by using AFM-based dynamic oscilla-
tory indentation in conjunction with a judicious choice
of the AFM-probe radius (R ~ 12.5 mm) to obtain a full-
spectrum experimental frequency response, i.e., from the
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low-frequency (equilibrium) compressive limit up to the
high-frequency (instantaneous stiffness) limit, which would
include the midfrequency range in which energy dissipation
should peak. Second, we used the observed length scale
dependence of the dynamic response of cartilage to test
the hypothesis that poroelasticity is the dominant mecha-
nism governing the time/frequency-dependent behavior of
cartilage at the nanoscale. Third, we used two different
widely used poroelastic models, isotropic (10) and fibril-re-
inforced (29), to predict the observed frequency-dependent
nanomechanical behavior of cartilage. This fibril-reinforced
composite model was constructed to simulate the structure
and properties of the cartilage ECM components, i.e.,
collagen and aggrecan (25,30). By accounting for the
fibrillar collagen network, parametric study has been carried
out on the important material parameters that determine the
poroelastic energy dissipation at the nanometer-level defor-
mation amplitudes, including the elastic modulus, Em, and
hydraulic permeability, k, of the nonfibrillar matrix (mainly
aggrecan), and the elastic modulus, Ef, of the fibrils. These
parameters have been quantified for the superficial zone of
young bovine cartilage. Quantifying the nanoscale poroelas-
tic properties of tissue such as the elastic moduli of fibrillar
and nonfibrillar matrix and their hydraulic permeability
will serve to relate alteration in the tissue’s mechanical
properties to its molecular structure in different contexts,
such as the initiation and progression of osteoarthritis
(16), the contribution of important proteins in ECM other
than the well-studied macromolecules such as collagen
and aggrecan (28), and the development of tissue-engi-
neered matrices (21).
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MATERIALS AND METHODS

Sample preparation

Cartilage disks with an intact superficial zone (9 mm in diameter � 1 mm

thick) were harvested from the femoropatellar grooves of 1–2-week-old

bovine calves (Fig. 1 a), as described previously (31), and maintained in

sterile phosphate-buffered saline (PBS, without Mg2þ and Ca2þ) with

protease inhibitors (Complete Protease cocktail tablets, Roche Applied

Science, Indianapolis, IN) at 4�C for<24 h before testing. All the measure-

ments were performed in near-physiological PBS (137 mM NaCl, 10 mM

phosphate, 2.7 mM KCl, pH 7.4) at ambient temperature (25�C).
AFM-based dynamic oscillatory nanoindentation

Experiments were performed using cartilage disks harvested from three

joints (from three separate animals). Four disks were harvested from each

joint, and indentations at four different locations were performed on each

disk. Dynamic oscillatory indentation tests were performed using the

MultiMode AFM with a PicoForce piezo and Nanoscope IV controller

via the force mode (Veeco, Santa Barbra, CA) (Fig. 1 b). Gold-coated poly-

styrene colloidal probe tips (end radius (R)~12.5 mm; nominal spring

constant (k) ~4.0 N/m; Novascan, Ames, IA) were functionalized with

a neutral hydroxyl-terminated self-assembled monolayer (OH-SAM,

11-mecaptoudecanol, Sigma-Aldrich, St. Louis, MO). The cantilever

deflection sensitivity (nm/V) was calibrated on a hard mica surface, where

the cantilever deflection equals the z-piezo displacement in the contact

region. The thermal oscillation method was applied to determine the canti-

lever spring constant for each probe tip (32). The applied piezo displace-

ment profile for each indentation test was composed of an initial ~3 mm

indentation and subsequent force relaxation, followed by sinusoidal

displacements applied over a frequency range of f ¼ 0.2–130 Hz. A func-

tion generator (Model 645, Berkeley Nucleonics, San Rafael, CA) con-

nected to the PicoForce piezo controller was used to apply the sinusoidal

displacements via the sweep mode in the form of an exponential down-

chirp signal (high- to low-frequency, shown schematically in Fig. 1 c) for

a duration of 100 s for each frequency sweep. The amplitude of the
b

d

FIGURE 1 (a) Samples were harvested from the

femoropatellar grooves of 1- to 2-week-old bovine

calves. (b) Compressive deformations were applied

using AFM probe tips with a probe diameter of R¼
12.5 mm. (c) The deformation profile consisted of

an initial preindentation of d0 ¼ 2–4 mm followed

by sinusoidal displacements with an amplitude of

d¼ 15 nm superimposed on the the preindentation,

d0. The displacement frequency was swept from

f ¼ 0.2–130 Hz. (d) The finite element simulation

is shown schematically for an impermeable inden-

tor and substrate.

Biophysical Journal 101(9) 2304–2313



2306 Nia et al.
sinusoidal displacements, d ¼ 15 nm, was chosen to be much less than the

initial offset indentation, d0 ~ 3 mm (d << d0). Control experiments were

first performed using a mica sample at the same z-piezo displacement

frequencies and amplitudes as for system calibration (22). At low frequen-

cies (<10 Hz), the amplitude and phase of the z-piezo deformation/voltage

ratio is constant as a function of frequency, and no correction is needed. At

higher frequencies (>10 Hz), correction for the magnitude and phase of the

stiffness was performed based on the ratio between z-displacement and

z-voltage (Fig. S4 in the Supporting Material), which is the continuous

version of the discrete analysis described in our previous study (22). The

probe displacement was obtained by subtracting the deflection from the

z-piezo signal. The corresponding force exerted on the probe was calculated

as the product of the deflection signal and the cantilever spring constant. In

a separate test, the frequency sweep method was compared independently

to results obtained by application of discrete frequencies, using 10 cycles

at each frequency over the entire range of interest. The close agreement

between the results of the frequency sweep and discrete frequency loading

confirmed the appropriateness of the sweep method, which was then used

for all of the experiments presented here.

Four disks were harvested from each joint (one disk each from the ante-

rior and posterior aspects of the medial and lateral surfaces of the femoro-

patellar groove), and oscillatory indentations were performed at four

different locations on each disk. The dynamic stiffness (magnitude and

phase) was measured for these four tests per disk, and a mean of the corre-

sponding material property values (Em, Ef, and k) was assigned to each disk.

The mean 5 SE of the material properties of each joint were then calcu-

lated from these four disks (i.e., n ¼ 4). The averaged material property

values over all three joints were then computed (i.e., mean 5 SE, n ¼ 3).
Data analysis and calculation of magnitude
and phase of the complex modulus

A discrete Fourier transform (DFT) was used to obtain the fundamental

frequency components of the z-piezo and deflection signals, from which

the amplitude of the oscillatory force of the probe, Fosc, and the oscillatory

displacement of the probe, d (Fig. 1 c), were calculated at each frequency, f.

The sampling rate of the DFT was fs ¼ 4000 Hz (i.e., at least 10 times

greater than the highest loading frequency used). The magnitude of the

dynamic complex indentation modulus at each frequency was then obtained

as (33)

jE�ðf Þj ¼ Foscðf Þ
dðf Þ

1

2ðRd0Þ1=2
; (1)

where R is the probe radius. Fosc/d was normalized as above, based on a

Taylor series expansion of the Hertz model to account for the spherical

probe tip geometry (33). The phase angle f(f) was then calculated as the

phase between the fundamental sinusoidal components of Fosc and d (shown

schematically in Fig. 1 c). Tanf is then related to the energy dissipation

(34). After obtaining the dynamic modulus as a complex number in

frequency domain, the amplitude and phase were each smoothed using

a moving average. This procedure was carried out on the logarithmically

spaced signals via an algorithm defined such that the start and end frequen-

cies (fs and fe, respectively) of the window for the moving average are

related by log(fe) – log(fs) ¼ 0.05); i.e., the window size was 5% of a loga-

rithmic decade. All the data processing was performed using MATLAB

(The MathWorks, Natick, MA).
Poroelastic finite element modeling

Isotropic poroelastic model

The isotropic model was implemented using the soil mechanics capacity of

the general-purpose commercial finite element software ABAQUS (Version
Biophysical Journal 101(9) 2304–2313
6.9, Simulia, Providence, RI) for the configuration shown in Fig. 1 d.

Because of the symmetry of the problem, the specimen was modeled using

axisymmetric, poroelastic elements (CAX4P). The probe-tip indenter was

modeled as a rigid surface since the spherical tip is much stiffer than

cartilage. The probe tip was assigned a displacement history as described

above (see Fig. 1 c), and a zero-displacement boundary condition was

assumed at the lower cartilage-substrate interface. The indenter and the

substrate surface were assumed to be impermeable to fluid flow. Since tip

friction was predicted to have negligible effects on the nanoindentation

load-displacement curves using the developed finite element model (see

Fig. S6 and Gupta et al. (25)), the indenter-cartilage contact region was

assumed to be frictionless. The reduced friction and surface adhesion that

resulted from functionalizing the tip with OH-SAM further supported this

modeling assumption. The pore pressure was set to zero at the top surface

of the cartilage (excluding the indenter contact surface) and the side

surfaces of the cartilage to simulate free draining of the interstitial fluid

from the cartilage at those surfaces. The height h and radius l of the sample

were set to be much larger than the indenter contact distance,

d (l ¼ h ¼ 100 mm >> d=2 � 8 mm; see Fig. 1, b and d), to simulate an in-

finite domain on the radius and depth of the cartilage disk sample. The rele-

vant mechanical properties in this isotropic model are Young’s modulus, E,

the hydraulic permeability, k, and Poisson’s ratio, n.

Fibril-reinforced poroelastic model

A fibril-reinforced poroelastic model (30) was also tested, in which carti-

lage is approximated as a composite composed of an isotropic nonfibrillar

matrix (representing the proteoglycan constituents; same element as used in

the isotropic model), a fibril network (representing collagen fibrils), and

a fluid phase (representing the water/electrolyte solution). The mechanical

properties of the nonfibrillar matrix are assumed to be the Young’s

modulus, Em, Poisson’s ratio, n, and the hydraulic permeability, k. The fibril

network is represented by the Young’s modulus Ef, which is assumed to be

independent of strain. In the fibril-reinforced model, as a first approxima-

tion, it is assumed that the fibers resist only tension, and the compressive

modulus for the fibers is set to zero (29). The deformation, fluid velocity,

and pore pressure fields caused by the initial offset indentation depth

(d0 ~ 3 mm) and subsequent dynamic compression were largely confined

to the top ~100 mm of superficial zone cartilage, i.e., a distance of around

eight probe radii (see the discussion of Fig. 5, below). Therefore, the

measured dynamic moduli largely reflect the material properties of the

superficial zone.
Calculation of poroelastic material properties

In the isotropic model (10,27), the Young’s modulus, E, was determined

directly from the low-frequency modulus, EL. The hydraulic permeability,

k, was determined from the peak frequency of the phase angle, and

Poisson’s ratio, n, was varied from 0 to 0.45 to obtain the best fit.

In the fibril-reinforced model, the poroelastic properties, Em, Ef, and k,

were obtained from the best fit of the model to the experimental data

(smoothed magnitude, jE�j, and phase, f, of the dynamic modulus in

frequency domain). First, the low-frequency asymptote of the model was

fit to that of the experimental data by varying Em (It will be shown below

in the parametric study that varying the other parameters—Ef, k, and the

Poisson’s ratio, n—did not affect the low-frequency asymptote). Then,

with Em fixed, the high-frequency asymptote was found to depend only

on Ef (see the parametric study section in Results). Therefore, Ef was ob-

tained by fitting the high-frequency asymptote of the model to that of the

experimental data. Finally, the hydraulic permeability, k, was obtained by

matching the frequency of the peak of the theoretical phase angle to that

of the data, since varying the permeability only shifted the frequency depen-

dence of jE�j and f. Throughout this study, we used a value for Poisson’s

ratio of n ¼ 0.1, the same value measured previously for 1- to 2-week

old bovine femoropatellar groove cartilage similar to that used in this study

(35). Em, Ef, and k were calculated from the results of experiments
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performed on cartilage disks harvested from three joints (from three sepa-

rate animals).
RESULTS

Dynamic nanoindentation response of cartilage

The magnitude and phase angle, jE�j and f, of the dynamic
complex indentation modulus measured versus frequency is
shown in Fig. 2 for a typical cartilage disk. The solid black
line corresponds to the mean value of frequency sweeps at
10 different locations on one disk, and the dashed black
lines are the 95% confidence intervals for these 10 locations.
For the 12.5-mm-radius AFM probe tip used in this study,
the peak in phase angle, fpeak, was observed to occur
typically at the characteristic frequency fpeak ~ 20 Hz
EL

a

b

FIGURE 2 (a) The mean value and 95% confidence intervals for the

magnitude of the dynamic indentation modulus, jE�j, is shown as a function
of frequency for n¼ 10 independent indentation sites on one typical disk. The

moduli EL and EH represent the low-frequency and high-frequency asymp-

totes, respectively, of the modulus curve. (b) The mean value and 95% confi-

dence intervals for the phase angle of the dynamicmodulus versus frequency.

The characteristic frequency at which the phase peaks is denoted by fpeak.

At low and high frequencies the phase angle approaches zero. The behavior

predicted by an isotropic (dashed red line) and a fibril-reinforced (dotted blue

line) poroelastic finite element model are shown for themagnitude and phase

of the dynamicmodulus. Thematerial parameters obtained from the best fit of

the isotropic model to the data are E¼ 0.032 MPa, k¼ 9.1� 10�14 m4/N$s,

and n ¼ 0. The material parameters obtained from the best fit of the fibril-

reinforced model are: Em ¼ 0.032 MPa, Ef ¼ 0.29 MPa, and k ¼ 1.3 �
10�14 m4/N$s, with n taken to be 0.1 based on measurements reported for

similar bovine calf cartilage in the literature (35).
(Fig. 2 b). At low frequencies, f << fpeak, jE�j approached
an asymptotic value defined as EL (Fig. 2 a), which corre-
sponds to the equilibrium elastic mechanical response of
the cartilage specimen in the absence of rate processes. At
high frequencies, f >> fpeak, jE�j approached an asymptotic
(frequency-independent) value defined as EH. In subsequent
experiments, performed to estimate the constituent mechan-
ical properties of disks from all three animals (see Table 1
below, which will be discussed in more detail later) as
detailed in the Methods, low- and high-frequency asymp-
totes of jE�j, as well as a peak in the phase angle, f, were
clearly observed for each frequency sweep on each disk
specimen, qualitatively similar in appearance to that of
Fig. 2.
The length scale dependence of dynamic
nanomechanical properties suggests that
poroelasticity is the dominant dissipation
mechanism at the nanoscale

Taking advantage of the fact that the dissipation due to flow-
dependent poroelasticity depends on the characteristic
length scale of the fluid flow, whereas the dissipation due to
intrinsic viscoelasticity is theoretically length scale-indepen-
dent, we investigate the contribution of poroelasticity in the
observed nanoscale frequency-dependent behavior of carti-
lage. Based on the linear poroelasticity theory (9), the char-
acteristic poroelastic diffusion time is tp ~ [L2/(Hk)], where
H is the longitudinal (confined-compression) modulus, k
the hydraulic permeability, and L the characteristic length
over which fluid flows, and where, therefore, L ~ d (see
Fig. 3 c, inset) based on the contact distance between the
indenter and sample corresponding to the probe tip geometry
and load magnitude of the nanoindentation experiment. The
characteristic frequency, fpeak, governing the dynamic
response is the inverse of tp, and is defined as (22,27)

fpeakf
kH

d2
; (2)

where fpeak is the peak frequency of the phase angle (e.g.,
Fig. 2 b). We experimentally tested the relation between
TABLE 1 Poroelastic properties of bovine calf femoropatellar

groove cartilage disks harvested with intact superficial zone

Joint (animal) no. Em (MPa) Ef (MPa) k (m4/N$s) � 10�15

1 0.054 5 0.011 0.30 5 0.05 7.79 5 1.51

2 0.101 5 0.024 0.56 5 0.15 11.60 5 2.44

3 0.073 5 0.020 0.39 5 0.05 10.64 5 2.41

Mean 5 SE 0.076 5 0.007 0.42 5 0.08 10.01 5 1.14

Em ¼ Young’s modulus of the nonfibrillar matrix; Ef ¼ Young’s modulus of

the fibrillar network; k ¼ hydraulic permeability. Disks (n ¼ 4) were tested

from each of N ¼ 3 joints. First, for each disk, values were computed as the

mean 5 SD from m ¼ 4 different locations on that disk. The mean 5 SE

was then computed for the n ¼ 4 disks harvested from each joint. Finally,

the mean 5 SE was obtained from the N ¼ 3 joints.

Biophysical Journal 101(9) 2304–2313
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FIGURE 3 (a and b) Magnitude (a) and phase

(b) of the dynamic indentation modulus of cartilage

measured with increasing indentation depths, d0,

and, as a result, increasing contact distances, d,

for indentation at a single typical location. (c)

The peak frequency, fpeak, decreased with increas-

ing contact distance, d. fpeak is plotted as a function

of the inverse square of the contact distance, 1/d2,

for five sequential increases in d performed at three

different locations (each line corresponding to one

of the locations). The best-fit linear regression lines

between fpeak and 1/d2 (the minimum value of the

goodness of fit, R2, was 0.949 for all 16 locations)

confirming this relation between fpeak and 1/d2

suggest that poroelasticity is the dominant mecha-

nism in the observed dynamic response at the nano-

scale.
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fpeak and d in Eq. 2 by varying the initial offset indentation
depth, d0, in a manner that would alter the contact distance,
d. With d0 initially set to 1.4, 1.7, 2.1, 2.4, and finally 2.8 mm
at a given location, a dynamic indentation frequency sweep
was applied at each d0, and jE�j and fwere plotted as a func-
tion of frequency. An increase in d0 caused a shift in the
measured jE�j and f toward lower frequencies (e.g., the
experiment of Fig. 3, a and b, performed at a single location
on one disk). The peak in the phase angle was then plotted
versus 1/d2 (e.g., the three different locations on one disk
shown in Fig. 3 c), where d was calculated from the contact
geometry as d ¼ 2Rcos�1[(R � d0)/R]. To check the line-
arity between fpeak and 1/d2, which is predicted by linear
poroelasticity theory, a straight line was fit to the data of
fpeak vs. 1/d

2 at each value of d0 at each indentation location,
and the goodness of fit, R2, was calculated. This process was
repeated on each of the four different locations on each of
the four disks from each of the three joints. For all 48 loca-
tions, excellent linearity was observed, as the minimum
value of R2 was 0.949. The difference in the slopes of the
lines in Fig. 3 c corresponds to spatial variations in the
mechanical properties (e.g., H and k) at each indentation
location.
Fibril-reinforced poroelastic model predicts
the dynamic modulus more efficiently
than an isotropic poroelastic model

Given the results of Fig. 3, which strongly suggest the domi-
nance of poroelastic behavior governing the nanomechani-
cal response of cartilage, we then tested the ability of both
an isotropic and a fibril-reinforced poroelastic theoretical
model to predict the measured dynamic response. In the
isotropic model, varying the hydraulic permeability shifted
the frequency response to higher/lower frequencies but did
Biophysical Journal 101(9) 2304–2313
not change the values of the maximum phase angle or the
high-frequency asymptotic modulus, EH. For the above
parameter ranges, the maximum phase angle predicted by
the isotropic model was fmax ¼ 8� (Fig. 2 b, dashed red
line), whereas the maximum phase angle measured experi-
mentally was in the range 25–50�. The high-frequency/
low-frequency ratio asymptotic modulus magnitudes,
EH/EL, predicted by the isotropic model was EH/EL < 2
(Fig. 2 a, dashed red line), whereas the observed EH/EL

was in the range 4–10. In contrast, the fibril-reinforced
model better predicted the frequency dependence of jE�j
and f (Fig. 2, dotted blue lines). By increasing the Ef/Em

ratio, the maximum value of the phase angle, as well as
the ratio of EH/EL, increased to values closer to those
measured experimentally (Fig. 2). Finally, we note that
Eq. 2 for fpeak was also found to hold for both the fibril-re-
inforced and isotropic poroelastic models using finite
element simulations described above.
Parametric study of the fibril-reinforced
poroelastic model

At very low frequencies, the contribution of fluid flow is
negligible and the mechanical response is governed by the
purely elastic response of the material. Consequently, the
low-frequency modulus is equal to the Young’s modulus
of the nonfibrillar matrix, Em. This was verified in simula-
tions using values of Em from 0.01 to 0.05 MPa and
observing that EL¼ Em in the low-frequency limit (Fig. 4 a).
With values of Ef,, n, and k fixed, an increase in Em

decreased the maximum phase angle and shifted the peak
frequency toward higher frequencies (Fig. 4 b).

With Em, n, and k held constant, an increase in Ef should
further reinforce the poroelastic matrix by the tension-resist-
ing fibril network, resulting in a higher high-frequency
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FIGURE 4 (a and b) Parametric study of the

dynamic response of the fibril-reinforced model

by varying the Young’s modulus of the nonfibrillar

matrix, Em. The other parameter values are fixed at:

Ef ¼ 0.1 MPa, k ¼ 2 � 10�14 m4/N$s, and n ¼ 0.1

(c and d) Parametric study of the dynamic response

by varying the Young’s modulus of the fibril

network, Ef. The other parameter values are fixed

at Em ¼ 0.03 MPa, k ¼ 2 � 10�14 m4/N$s, and

n ¼ 0.1.
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modulus, EH, at the same time leaving EL unaffected at the
value of the given Young’s modulus of nonfibrillar matrix,
Em. Simulations using the fibril-reinforced model showed
exactly this trend (Fig. 4 c). The increase in Ef also resulted
in a higher value of fpeak and a shift in fpeak to the higher
frequency (Fig. 4 d).

The variation of the drained Poisson’s ratio of the nonfi-
brillar matrix over the range of values reported in the liter-
ature had only a small effect on the dynamic response
(see Fig. S1). Thus, we used a Poisson’s ratio value of n ¼
0.1, as described above (35). Variation in the hydraulic
permeability, k, resulted in a proportional frequency shift
of the dynamic response, leaving the low- and high-fre-
quency moduli and the maximum phase angle unaffected,
as expected.
Poroelastic properties of superficial-zone
cartilage ECM constituents estimated
from dynamic nanoindentation

By fitting the predictions of the fibril-reinforced poroelastic
model to the data from all three animals, values for Em, Ef,
and k (assuming n ¼ 0.1) for superficial-zone tissue were
estimated (Table 1). The low-frequency modulus, EL,
directly determined the Young’s modulus, Em. Since the
EH/EL ratio is only a function of Ef/Em, Ef was readily calcu-
lated after Em was determined. Having found Em and Ef, k
was found from the observed value of fpeak, since the varia-
tion in k only resulted in a frequency shift of the dynamic
response, leaving the high- and low-frequency moduli unaf-
fected. For each joint, four disks are harvested (two from
the medial and two from the lateral parts), and four indenta-
tions at different locations are performed on each plug. The
reported values (Table 1) for each joint are based on n ¼ 4
disks, where the values for each disk are the average of the
corresponding values over four different locations on the
disk. The reported value for all joints is based on n ¼ 3
joints, where the value for each joint is that obtained from
the average of the 16 indentations.
Intratissue fluid velocity and fluid pressure
profiles at low and high frequencies

Using the mean values of the poroelastic properties in
Table 1 (Em ¼ 0.076 MPa, Ef ¼ 0.42 MPa, k ¼ 10.01 �
10�15 m4/N$s, and n¼ 0.1), the spatial profiles of intratissue
fluid velocity and pressure in the region ~75 mm below the
probe tip were calculated using the fibril-reinforced model
for selected times during a deformation cycle of the probe
tip (Fig. 5). These computations were performed for
frequencies of f ¼ 3 Hz and f ¼ 70 Hz, corresponding to
frequencies below and above fpeak. The magnitude of the
velocity field is shown at times t ¼ 0, T/4, T/2, and 3T/4,
where T is the period of the corresponding frequency
(Fig. 5, a–d and a0–d0). For f << fpeak, the fluid velocity
caused by probe tip motion is very small, except for the
very thin region immediately below the probe tip. The
velocity field at higher frequencies is larger in magnitude,
and the fluid flows deeper into the tissue compared to flows
caused by low-frequency oscillation. For high frequencies,
the flow extends downward to ~50 mm below the probe
tip, i.e., about four times the probe radius (R ¼ 12.5 mm).
Therefore, the material properties reported in Table 1 are
the effective properties of the superficialmost ~50 mm of
tissue. For both high and low frequencies, the fluid velocity
magnitude is highest at the interface between the tip and
Biophysical Journal 101(9) 2304–2313
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FIGURE 5 Fluid velocity magnitude and pore

pressure computed from the fibril-reinforced model

based on parameter values in Table 1. Fluid

velocity magnitude is shown for low frequencies,

f ¼ 3 Hz (a–d), and high frequencies, f ¼ 70 Hz

(a0–d0). Pore pressure is shown for low frequencies,

f ¼ 3 Hz (e–h), and high frequencies, f ¼ 70 Hz

(e0–h0). The fluid velocity and pore pressure are

compared at four different times over a full cycle,

i.e., t ¼ 0, T/4, T/2, and 3T/4, where T is the period

of the corresponding frequency.
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sample (Fig. 5), and it attains maximum value at the time
when the tip starts a compression cycle. The corresponding
pore pressure field (Fig. 5, e–h and e0–h0) attains a maximum
value just below the tip, at the symmetry line. The pressure
is zero at all the free surfaces of the sample where the fluid
can drain freely. Similar to fluid velocity, the pore pressure
extends deeper into the tissue at higher frequencies.
DISCUSSION

In this study, AFM-based oscillatory compression was used
in conjunction with poroelastic finite element modeling to
measure and predict the frequency-dependent mechanical
behavior of superficial zone cartilage. The previously estab-
Biophysical Journal 101(9) 2304–2313
lished methodology of Han et al. (22) was expanded to
enable measurement of the full poroelastic response over
a three-decade frequency range: both low- and high-
frequency asymptotes in the magnitude of the dynamic
modulus (corresponding to equilibrium and instantaneous
responses, respectively) were clearly observed, as was the
peak in phase lag (related to the peak in energy dissipation).
Since the nanoindentation frequency response of a hydrated
tissue depends on tissue mechanical properties and geo-
metric considerations (e.g., tip radius, R, and offset indenta-
tion depth, d0), the choice of R in this study was critically
important in enabling the measurement of the full frequency
response. Previous attempts at achieving the peak phase lag
were unsuccessful in macroscale (31) and nanoscale (22)
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deformation due to limits associated with the characteristic
length scales and frequency ranges of the test machines.

The low-frequency limit of the dynamic modulus is the
equilibrium modulus, since deformations are so slow that
the fluid flow becomes negligible. At high frequencies, the
fluid cannot move quickly enough relative to the solid
network, and the response is equivalent to that of an incom-
pressible material with the same shear modulus as that at
low frequencies (36). At frequencies between these limits,
the poroelastic response of the cartilage dominates and the
phase angle attains a peak value in the region of the inflec-
tion frequency of the dynamic modulus, jE�j (Fig. 2). Thus,
the parameters EH, EL, and fpeak form a complete set to
compare the predictions of the poroelastic finite element
model to estimate the intrinsic material properties of
cartilage.

To test the hypothesis that poroelasticity is the dominant
mechanism underlying the dynamic nanoindentation
response, we first compared the length scale dependence
of the measured fpeak and then compared the predictions
of poroelastic theory to the measured indentation response
over the entire frequency range. The length scale depen-
dence of fpeak was tested by varying the contact distance,
d, experimentally (Fig. 3), and linear poroelasticity theory
was indeed able to predict this scaling dependence
(Eq. 2). Comparing isotropic and fibril-reinforced poroelas-
tic models, the fibril-reinforced model was found to better
predict the magnitude and phase of the dynamic modulus
over the entire frequency range of interest. Due to complex
architecture of the collagen network, cartilage is highly
anisotropic and has different properties in tension and
compression. At higher frequencies, the fluid pressurization
generates dynamic radial expansion of the matrix where the
reinforcement of the matrix plays an important role in the
dynamic response. The fibril-reinforced model is one of
the models widely used to describe this biomechanical attri-
bute of cartilage (29). In this model, the fibril network resists
tension and, superimposed with the isotropic nonfibrillar
matrix, determines the mechanical stiffness of the material.
Comparing the isotropic poroelastic model (10) with the
fibril-reinforced one (29) in the indentation geometry of
interest, we found that the fibril-reinforced model better
predicts the dynamic response of the cartilage at the nano-
scale (Fig. 2), as has been observed for unconfined compres-
sion at the tissue scale (30). The remaining discrepancy
between the theoretical model and data are likely due to
additional complex behavior of cartilage ECM, including
anisotropy of the elastic constants and permeability, strain-
dependent permeability, fibril orientation, strain-rate-depen-
dent fibril stiffness, and the intrinsic viscoelasticity of the
ECM macromolecules.

The frequency dependence of the storage and loss moduli,
an alternative representation of the measured force and
displacement data, was also studied (see, e.g., Fig. S5 for
the storage and loss moduli corresponding to the data of
Fig. 2). Similar to the frequency dependence of the stiffness
magnitude, the storage modulus increases monotonically
with frequency between low- and high-frequency asymp-
totes. The frequency response of the loss modulus is similar
to that of the stiffness phase angle, and is related to energy
dissipation. A peak in the loss modulus similar to that of the
phase angle response was observed; however, the peak in
loss modulus occurred at ~50 Hz, whereas the peak in the
stiffness phase angle was ~20 Hz.

Using the fibril-reinforced model, we then estimated the
intrinsic material properties of immature bovine cartilage
with an intact superficial zone, including the Young’s
modulus of the nonfibrillar matrix, Em, the Young’s modulus
of the fibrillar network, Ef, and the hydraulic permeability, k
(Table 1). Analysis (Fig. 5) showed that the material proper-
ties so calculated correspond to those of the most superficial
~100 mm of tissue, i.e., the properties of the superficial zone
of cartilage. The depth dependence of the equilibrium
longitudinal (confined-compression) modulus, H, of bovine
articular cartilage has been reported previously (37); the
measured value for the most superficial 125 mm of tissue
was H ~ 0.1 MPa, which is in reasonable agreement with
the Young’s modulus Em ¼ 0.08 MPa obtained here (see
Table 1; for n ¼ 0.1, H ~ Em within 2% error). In addition,
the hydraulic permeability measured by dynamic nanoin-
dentation (k ~ 10.1 5 1.14 � 10�14 m4/N$s, Table 1) is
also consistent with the known lower glycosaminoglycan
content (and thus higher permeability) of the superficial
zone.

Thus, the ability of our approach for measuring the
intrinsic material properties of cartilage at high spatial and
depth resolutions appears particularly useful in isolating
the properties of superficial zone cartilage, which is known
to be the region subject to the earliest degradation in osteo-
arthritic disease (38). The variation in the mechanical prop-
erties measured from location to location, disk to disk, and
joint to joint is most likely due to the known heterogeneity
of cartilage (39), associated with variations in the biochem-
ical composition and spatial orientation of matrix macro-
molecules. Although the presence of a cell directly under
the probe tip may also contribute to the variation in
measured property values (17), we speculate that the sparse
distribution of cells in the superficial zone (40) together with
many indentation repetitions at different sites would likely
minimize such effects (for more details, see Fig. S7).

One advantage of the method developed to measure the
poroelastic properties of the cartilage is the ability to
capture the time-dependent behavior at both short and
long timescales. Human and animal cartilages experience
compressive deformations over a very wide range of ampli-
tudes and frequencies, depending on various activities of
living. Quick running and jumping results in cartilage
impact strains of a few percent, and the resulting strain rates
can correspond to frequencies as high as the kHz range.
Conversely, resting after loading leads to very slow stress
Biophysical Journal 101(9) 2304–2313
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relaxation rates, corresponding to larger deformations and
frequencies as low as mHz. This represents a range in
frequency of 6 orders of magnitude, with deformations in
the whole joint from nano- to macroscale. In this study,
we measured the dynamic response of cartilage over all
the possible frequencies within the limitations of the instru-
ment (0.2–130 Hz) with nanoscale deformation amplitudes.
The increase in stiffness and dissipation occurs at high
frequencies (short-time loading), which correspond to
impact loading. This behavior has previously been investi-
gated in macroscale deformations, whereas this work
focused on nanoscale deformation.

Ongoing studies using this approach are focused on
measurement and modeling of electrokinetic interactions
in charged tissue and gels such as cartilage. The presence
of electrokinetic streaming potentials constitutes direct
evidence of local intratissue fluid flow. Mechanical defor-
mation of the hydrated extracellular matrix causes a flow
of interstitial fluid and fluid-entrained counterions relative
to the fixed charge group of proteoglycans. This fluid flow
is driven by compression-induced pressure gradients, as
simulated diagrammatically in Fig. 5. Thus, fluid convection
of counterions tends to separate these ions from the oppo-
sitely charged molecules of the matrix, thereby producing
an electric field collinear with the fluid flow and propor-
tional to the fluid velocity at each position within the matrix,
which has been characterized at the tissue scale (3,41).
These ongoing studies should enable understanding of the
electrokinetics of cartilage at the nanoscale.

This method may also be relevant for diagnostics of carti-
lage pathology. Although stiffness may change between
healthy and diseased tissue by a factor of 2 or 3 (42), we
recently found that the hydraulic permeability of bio-
chemically degraded tissue increased by an order of magni-
tude (not discussed here), which can be quantitatively
measured by the change in the frequency peak of the phase
angle. Therefore, this study sets the groundwork for ongoing
investigations of poroelasticity of tissue during osteoar-
thritis-like disease progression by characterizing the poro-
elastic behavior of cartilage at nanoscale deformations.
CONCLUSION

Here, we used AFM-based dynamic oscillatory compression
(frequency range, f ~ 0.1–100 Hz; amplitude, d ~15 nm;
indentation depth, d0 ~ 3 mm) in conjunction with poroelas-
tic finite element modeling to quantify and predict the
frequency-dependent mechanical behavior of cartilage. We
observed the full poroelastic response of the cartilage over
the frequency range of three decades, i.e., we clearly
observed the low- and high-frequency asymptotes in the
magnitude of the dynamic modulus (corresponding to equi-
librium and instantaneous responses, respectively), as well
as the peak in the phase angle (corresponding to the peak
in energy dissipation). First, by defining the characteristic
Biophysical Journal 101(9) 2304–2313
frequency fpeak as the frequency at which the phase angle
peaks, we showed that fpeak scales linearly with the inverse
square of the contact distance, 1/d2, where the contact
distance, d, is the characteristic distance over which the fluid
flows. Second, we observed that the magnitude of the
dynamic modulus, jE�j, and the phase angle, f, correspond
well to that predicted by the fibril-reinforced model. And
third, the dynamic mechanical properties were observed to
be independent of the deformation amplitude in the range
d ¼ 7–50 nm over the entire frequency spectrum of interest,
as predicted by linear poroelasticity theory. The above
evidence suggests that poroelasticity is the dominant mech-
anism underlying the time-dependent mechanical behavior
at nanoscale deformations.
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