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SUMMARY
This paper presents a recursive approach for solving
kinematic and dynamic problems in snake-like robots using
Kane’s equations. An n-link model with n-nonholonomic
constraints is used as the snake robot model in our
analysis. The proposed algorithm which is used to derive
kinematic and dynamic equations recursively, enhances
the computational efficiency of our analysis. Using this
method we can determine the number of additions and
multiplications as a function of n. The proposed method is
compared with the Lagrange and Newton-Euler’s method
in three different aspects: Number of operations, CPU time
and error in the computational procedures.

KEYWORDS: Snake robot; Nonholonomic constraints;
Kane’s equations; Computational efficiency.

I. INTRODUCTION
This paper discusses the equations of motions of the snake-
like articulated robots. Such a robot has attracted attention
of many researchers for its capability of multiple functions,
such as grasping and locomotion, by varying its shape.
Particularly, the mechanism of locomotion is quite different
from that of other mobile robots; that is to say, the robot
has no driving wheel. Several kinds of snake-like robots
have been proposed by many reseachers.1−4 The Prautsch3

research deals with an articulated snake-like robot with an
actuator in each joint, and a passive wheel in the middle of
each link. It is assumed that the wheel does not sideslip.

A dynamic analysis of the mechanism has considerable
importance in the field of snake robots. The snake robot can
be considered as a serial manipulator with n links that has
n constraints. The constraint equations are the no sideslip
condition of each wheel in the direction perpendicular to the
corresponding link. These constraints are of the nonholo-
nomic type. In the dynamic analysis of such mechanisms,
one approach is to derive the equations of motion for
the unconstraint system, and then to apply the constraint
equations, as it is done by Prautsch and Mita.3 Hence in our
approach, the dynamic analysis of the unconstraint system is
reduced to a dynamic analysis of a serial manipulator.

In deriving the equations of motion for a serial manipulator
the main task is the derivation of the generalized mass
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matrix and bias vector. There are several methods for the
dynamic analysis of a serial robot. The best-known method
was proposed by Walker and Orin.5 Using the Newton-Euler
method, Walker and Orin developed the method of a rigid
body, for which the generalized mass matrix is obtained
recursively. Angeles and Ma6 proposed another method that
follows this approach, which is based on the calculation of the
natural orthogonal complement of the manipulator kinematic
constraint equation. In the above methods, in order to apply
the nonholonomic constraints, either the degree-of-freedom
of the system should be increased or the Lagrange multipliers
should be introduced. Hence, the equations describing the
motion of the system are increased in number and, as a
result, the computational complexity of the system increases
considerably. Hence an alternate formulation should be
investigated, which would lead to a simpler algorithm in the
dynamic analysis of the constrained manipulators. This is
the motivation behind this study reported here. In this regard,
Kane’s equations are investigated first in the realm of snake
robots.

Kane and Levinson7 proposed a method for forward and
inverse dynamic of robotic manipulators, which was first
introduced by Kane for general nonholonomic mechanical
systems. Kane’s method implements the concept of genera-
lized speeds as a way to represent motion, similar to what the
concept of generalized coordinates does for the configura-
tion. This implementation allows one to focus on the motion
aspects of dynamic systems rather than on the configuration.
Therefore, it provides a suitable framework for treating
nonholonomic constraints. Generalized speeds provide the
formulation process with a desired flexibility because they
can be chosen to satisfy the needs and interests of the
designer, as it is presented by Baruh.8

In this paper we intend to derive a form of Kane’s equa-
tions of motion which is beneficial when we need to write
recursive relations. This form of Kane’s equations is novel
and very beneficial for establishing closed form equations.
Our discussions are organized around the following steps:

Step 1: An n-link model of snake-like robots is
constructed.

Step 2: An effective form of Kane’s equations of motion is
demonstrated and the final equations are derived recursively.

Step3 : Lagrange and Newton’s formulations are
presented.

Step 4: The effectiveness of different approaches is
compared in various aspects.
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Fig. 1. An n-link snake robot model.

II. A SNAKE-LIKE ROBOT MODEL
In this research, we use an n-link model as a model of the
snake like robot (see Figure 1). The center of mass (CM) of
each link is considered to be in the middle of the link. Each
link has a passive wheel, which does not have sideslip, so the
CM motion of each link is restricted to be parallel to the link
direction, which means there is a nonholonomic constraint
in each link.

In our model, x and y denote the position of the center
of mass of the first link, θi (1 ≤ i ≤ n) is orientation of the
i-th link and ϕi (1 ≤ i ≤ n − 1) is the relative angle of the
(i + 1)-th link to the i-th link.

The mass, length and moment of inertia of the i-th link are
mi , Li and Ii , respectively.

III. KANE’S EQUATIONS OF MOTION
To begin the formulation of equations of motion, one chooses
a set of parameters and variables to describe a certain mass
distribution, kinematic and kinetic quantities of the system
under consideration. Choosing parameters and variables
sounds deceptively simple, but the decisions made here
exert a strong influence on the eventual form and numerical
efficiency of the equations of motion.

If x, y and θi (1 ≤ i ≤ n) are identified at any instant, the
system configuration is known, so we select the generalized
coordinates as follows:

qi = θi(1 ≤ i ≤ n) (1a)

qn+1 = x (1b)

qn+2 = y. (1c)

After choosing generalized coordinates, generalized speeds
are chosen as follows:

u1 = V1 (2a)

u2 = θ̇1 (2b)

where V1 is the speed of the first link which is parallel to this
link. In this stage we intend to obtain q̇i (1 ≤ i ≤ n + 2) as
a function of qi (1 ≤ i ≤ n + 2) and uj (1 ≤ j ≤ 2). Since
qn+1 and qn+2 have not appeared in the equations of motion
(these coordinates are called ignorable coordinates), we can
obtain q̇i versus qi (1 ≤ i ≤ n) and uj (1 ≤ j ≤ 2).

The goal is to determine q̇i (1 ≤ i ≤ n + 2) with a
recursive approach, without using a constraint matrix which

increases operations in derivation. We have:

Vi+1 = Vi + ωi × hi (cos θi Î + sin θi Ĵ)

+ ωi+1 × hi+1 (cos θi+1Î + sin θi+1Ĵ) (3)

where Vi is the velocity of i-th link, ωi is the angular velocity
of the i-th link and hi = Li

2 .
We can exert nonholonomic constraints as:

Vi = Vi(cos θi Î + sin θi Ĵ) (4)

ωi = ωiK̂. (5)

If we substitute equations (4) and (5) into equations (3)
we have:

Vi+1 = ViCi + ωihiSi (6)

ωi+1 = (ViSi − ωihiCi)/hi+1 (7)

where Ci denotes cos ϕi and Si denotes sin ϕi .
Thus we have obtained a recursive form of V and ω which

can be used to determine the velocity and angular velocity
of each link as a function of u1, u2 and ϕi (1 ≤ i ≤ n − 1).
The computational complexity of calculating V , the velocity
vector, that is its components are Vi , is as follows:

M = 3n − 3

A = n − 1.

It should be noted that in this paper the computational com-
plexity is measured in terms of numbers of multiplications
(M) and additions (A).

For the computational complexity of calculating ω, the
angular velocity vector, that its components are ωi, we have:

M = 4n − 4

A = n − 1.

At this stage we introduce a novel form of Kane’s equations
of motion for this particular problem as follows (in general,
some alterations should be created):

Mu̇ + Nω = F (8)

where u̇ and ω are the generalized acceleration vector and
the angular velocity vector, respectively. M, N and F are
mass matrix, bias matrix and the generalized force vector,
respectively, that are defined as follows:

M(i, j ) =
n∑

k=1

(
mk

∂Vk

∂ui

∂Vk

∂uj

+ Ik

∂ωk

∂ui

∂ωk

∂uj

)
1 ≤ i, j ≤ 2

(9)

N(i, j ) =
n∑

k=1

(
mk

∂Vk

∂ui

∂Vk

∂qj

+ Ik

∂ωk

∂ui

∂ωk

∂qj

)
1 ≤ i, j ≤ n

(10)
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F(i) =
n−1∑
k=1

Tk

(
∂ωk+1

∂ui

− ∂ωk

∂ui

)
1 ≤ i ≤ 2. (11)

In equation (11), Tk denotes the exerted torque to k-th joint.
Since x and y have not appeared in equation (10), we can
neglect x and y when deriving N.

As can be seen, the partial derivatives of V and ω with
respect to u and q have appeared in equations (9) to (11). So
there is the necessity to compute these terms efficiently. In
what follows, we propose recursive relations for these terms.
For the derivatives with respect to u we have:

∂V1

∂u1
= 1,

∂ω1

∂u2
= 1 (12)

∂Vi+1

∂uj

= ∂Vi

∂uj

Ci + ∂ωi

∂uj

Sihi (13)

∂ωi+1

∂uj

=
(

∂Vi

∂uj

Si − ∂ωi

∂uj

Cihi

)/
hi+1. (14)

Using equations (12) to (14), the computational com-
plexity of calculating all the partial derivatives of ∂Vi

∂uj
is:

M = 6n − 6

A = 2n − 2.

And the computational complexity of calculating the partial
derivatives of ∂ωi

∂uj
is:

M = 8n − 8

A = 2n − 2.

But for the derivatives with respect to q, we initially set all
the derivatives equal to zero and then we proceed as follows:

For i = j − 1 and j > 1

∂Vi+1

∂qj

= −ViSi + ωiCihi (15)

∂ωi+1

∂qj

= (ViCi + ωiSihi)/hi+1. (16)

For i = j :

∂Vi+1

∂qj

= ∂Vi

∂qj

Ci + ∂ωi

∂qj

Sihi + ViSi − ωiCihi (17)

∂ωi+1

∂qj

=
(

∂Vi

∂qj

Si − ∂ωi

∂qj

Cihi − ViCi − ωiSihi

)/
hi+1.

(18)

For i > j :

∂Vi+1

∂qj

= ∂Vi

∂qj

Ci + ∂ωi

∂qj

Sihi (19)

∂ωi+1

∂qj

=
(

∂Vi

∂qj

Si − ∂ωi

∂qj

Cihi

)/
hi+1 (20)

The calculation of above relations is simplified if we consider
the following relations:

∂Vi

∂qj

= 0,
∂ωi

∂qj

= 0. (21)

Using equations (15)–(21), the computational complexity of
calculating all the partial derivatives of ∂Vi

∂qj
is:

M = 3
2n2 + 9

2n − 9

A = 1
2n2 + 5

2n − 5.

And the computational complexity of calculating all the
partial derivatives of ∂ωi

∂qj
is as follows:

M = 2n2 + 6n − 12

A = 1
2n2 + 5

2n − 5.

Now having computed all the required partial derivatives, it
is possible to calculate the main terms F, N and M that are
appeared in equation (8). The required number of additions
and multiplications for calculating F, N and M are as follows:

M = 4n2 + 14n − 6

A = 2n2 + 10n − 13.

Having computed F, N and M, the linear equations (8) should
be solved for u̇. The numbers of required operations for
deriving explicit expression for u̇ are as follow:

M = 6

A = 3.

The total numbers of additions and multiplications in Kane’s
method are as follow:

M = 3n2 + 24n − 27

A = 15
2 n2 + 97

2 n − 21.

IV. LAGRANGE’S METHOD
As mentioned earlier, the dynamics of a snake robot is
equivalent to an n-link that is subjected to n velocity
constraints. In this section, the equations of motion for an
unconstrained n-link system, which moves on the ground,
will be derived. As it was mentioned earlier, we only show
the brief results for the Lagrange’s method.

Using equations (1) for the definition of generalized
coordinates that are the same with the Kane’s method, the
kinetic energy is given by:

K = 1

2

n∑
i=1

(
miVi · Vi + Ii θ̇

2
i

)
(22)

where Vi is determined in equation (3). As there is no
variation in potential energy, the equations of motion can
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be written as:

d

dt

(
∂K

∂q̇i

)
− ∂K

∂qi

− Qi = 0 (i = 1, . . . , n + 2). (23)

The above equation is equivalent to:

M(q)q̈ + B(q, q̇) − Q = 0 (24)

where M(q) is the generalized inertia matrix and B(q,q̇)
is called bias vector. The generalized inertia matrix can be
calculated by using the following equation:

M(i, j ) = ∂2K

∂q̇i∂q̇j

(25)

where K is introduced in equation (22). Equation (25) is
the base of the recursive algorithm that is used to obtain the
generalized inertia matrix. The computational complexity of
this algorithm is as follows:

M = 5
3n3 + 5

2n2 − 19
6 n − 17

A = 1
6n3 + 3

2n2 + 4
3n − 5.

In the next step the bias vector will be derived. The bias
vector is calculated by using the algorithm proposed by
Walker and Orin.5 Letting q̈ = 0 in equation (24), it can
be seen that the bias vector will be equal to the generalized
forces. Eliminating the terms related to q̈, the centrifugal
terms would remain. In other words, it can be said that the
work done by these centrifugal forces equals to the work done
by generalized forces. So, employing a recursive algorithm,
this vector will be obtained with the following computational
complexity:

M = 10n − 4

A = 6n − 4.

In order to apply the velocity constraints to the system, the
following equation should be used:

M(q)q̈ + B(q,q̇) + A(q)λ = Q (26)

where A(q) is the Jacobian matrix and λ are the Lagrange’s
multipliers. The matrix A has a simple form and it can be
calculated with the following computational complexity:

M = 3
2n2 − 3

2n

A = 1
2n2 − 1

2n.

Equation (26) forms a system of differential-algebraic
equations. One of the well-known methods for solving such
systems is the augmented method discussed by Ginsberg.9 In
this method the system of equations is written in the following
form: [

M −AT

AT 0

] {
q̈
λ

}
=

{
Q

Ȧq̇ − ḃ

}
(27)

where Ȧ is the derivative of the constraint matrix with
respect to time. Since the constraints are independent of
time, ḃ vanishes. The matrix Ȧ also has a simple form. The
computational complexity of calculating this matrix is as
follows:

M = 3
2n2 − 1

2n

A = n2 − n.

In the next step the linear equations (27) should be solved
for the vector q̈. For this task the method of Triangular
Decomposition used by Nobel.10 The computational com-
plexity is as follows:

M = 4
3n3 + 10n2 + 44

3 n + 6

A = 4
3n3 + 8n2 + 29

3 n + 3.

The total numbers of addition and multiplication in this
method are:

M = 3n3 + 31
2 n2 + 39

2 n − 11

A = 3
2n3 + 11n2 + 31

2 n − 2.

V. NEWTON-EULER’S METHOD
In order to compare the proposed method with another known
method, the formulation that was introduced by Walker and
Orin5 is chosen. This method is one of the best methods that
have used Newton-Euler equations to derive the equations of
motion for an n-link system. The computational complexity
of each step is as follows:

Computing the generalized inertia matrix:

M = 12n2 + 56n − 27

A = 7n2 + 67n − 53.

Computing the bias vector

M = 137n − 22

A = 101n − 11.

Computing the Jacobian matrix (This part is similar to what
is done in Lagrange’s method):

M = 3
2n2 − 3

2n

A = 1
2n2 − 1

2n.

Computing the derivative of Jacobian matrix (This part is
also similar to what is done in Lagrange’s method):

M = 3
2n2 − 1

2n

A = n2 − n.
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Table I. Number of operations in each method.

General n n = 3 n = 12 n = 20

Method A M A M A M A M

Kane 15
2 n2 + 97

2 n − 21 3n2 + 24n − 27 72 192 693 1641 1653 3949

Lagrange 3
2n3 + 11n2 + 31

2 n − 2 3n3 + 31
2 n2 + 39

2 n − 11 184 268 4360 7639 16708 30579

Newton-Euler 4
3n3 + 25n2 + 617

3 n − 43 4
3n3 + 33

2 n2 + 1057
6 n − 50 663 835 6744 8329 20740 24737

Solving the system of equation for vector q̈ using Triang-
ular Decomposition:

M = 4
3n3 + 10n2 + 44

3 n + 6

A = 4
3n3 + 8n2 + 29

3 n + 3.

The total numbers of additions and multiplications in this
method are:

M = 4
3n3 + 33

2 n2 + 1057
6 n − 50

A = 4
3n3 + 25n2 + 617

3 n − 43.

VI. COMPARATIVE DISCUSSION
In this section we intend to have a comparison between
different approaches presented in this paper. This comparison
will be accomplished in various aspects:

• Number of operations
• CPU time
• Error in computations

VI.1. Number of operations
The numbers of algebraic operations in each method are
listed in Table I. We have also listed the numbers of operations
for different values of n, in this table. As it can be seen, the
order of required operations in the Kane’s method is O(n2),
while the operation order in the two other methods is O(n3).

VI.2. CPU time
To compare the CPU time between the Kane and Lagrange’s
methods a simulation is done. In this simulation, the
execution time for different values of n is determined in each
method and results are plotted in Figure 2. Parameters and
initial conditions used in this simulation are listed in Table II.
As is expected, the execution time in Kane’s method is much
smaller than that in Lagrange’s method.

Table II. System parameters and initial conditions.

Tk sin(t)/(n − k) N.m
Lk 0.2 m
mk 1 kg
Ik 0.005 kg m2

qk π × (−1)k/6
{u0}, {q̇0} 0

Fig. 2. CPU time in Kane and Lagrange’s method.

To have a better view of difference of CPU time in these
methods, we have plotted the ratio of the CPU time for
Lagrange’s method to the CPU time for Kane’s method in
Figure 3. As it can be seen, this ratio is approximately a linear
function of n.

VI.3. Error in computations
We have investigated the error in computation in the
two different aspects. The first aspect of comparison
is the difference between responses obtained from the
different precisions in our solving procedure. To achieve this
comparison, a simulation with listed conditions in Table III
is accomplished. The results are plotted in Figures 4 and 5.
As it can be observed, the single precision result is closer
to the double precision result in Kane’s method, while

Fig. 3. CPU time ratio.
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Table III. System parameters and initial conditions.

N 30
Simulation Time 100 s
Tk 1 N.m
Lk 0.2 m
mk 1 kg
Ik 0.005 kg m2

qk 0
{u0}, {q̇0} 0

Fig. 4. Kane’s method response for different precision in the solving
procedure.

Fig. 5. Lagrange’s method response for different precision in the
solving procedure.

in Lagrange’s method there is a considerable difference
between single and double precision results.

The second aspect of comparison is based on the error
in the energy function that is derived from the computation
error. The energy function is defined as below:

S = K(t) −
t∫

0

n−1∑
i=1

Ti(ωi+1 − ωi) dt

The model parameters and initial conditions used in this
simulation are listed in Table III. The results of the simulation
are shown in Figure 6. As it can be seen, the error in Kane’s
method is very smaller than that in Lagrange’s method.

Fig. 6. Energy error in Kane’s and Lagrange’s method.

The main cause of the error in Lagrange’s equations
arises from differentiating nonholonomic constraints. Of
course, this problem is solvable, but it involves increasing
the required operations and the CPU time.

VII. CONCLUDING REMARKS
In this paper we have presented an effective and novel form
of Kane’s equations of motion, which can be utilized for
deriving a recursive formulation of a snake-like robot. The
formulation has been obtained as a function of n, the number
of the links. Then the Lagrange and Newton’s equations
of motion have been derived. Finally, we have compared
these methods in three different aspects, viz. the number of
operations, the CPU time and the computation error. We have
proved that Kane’s method is the most suitable approach for
the kinematic and dynamic analysis of the snake robots, and
also it is an appropriate method for deriving closed-form
equations.
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